Quantum Harmonic Analysis for Polyanalytic Fock Spaces

We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in recent work by the second author and answer a few related open questions. For instance, we show that there exists a sym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2024-12, Vol.30 (6), Article 63
Hauptverfasser: Fulsche, Robert, Hagger, Raffael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in recent work by the second author and answer a few related open questions. For instance, we show that there exists a symbol such that the corresponding Toeplitz operator is unitary on the analytic Fock space but vanishes completely on one of the true polyanalytic Fock spaces. This follows directly from an explicit characterization of the kernel of the Toeplitz quantization, which we derive using quantum harmonic analysis. Moreover, we show that the Berezin transform is injective on the set of of Toeplitz operators. Finally, we provide several characterizations of the C 1 -algebra in terms of integral kernel estimates and essential commutants.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-024-10124-9