Motion of a Variable Body in a Time-Dependent Force Field

The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of solids 2024-06, Vol.59 (3), p.1283-1289
Hauptverfasser: Burov, A. A., Nikonov, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1289
container_issue 3
container_start_page 1283
container_title Mechanics of solids
container_volume 59
creator Burov, A. A.
Nikonov, V. I.
description The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion are reduced to classical equations that describe the motion of a rigid body in a force field that does not depend on time. There are cases when the equations of motion are reduced to completely integrable ones. Elements of the discussion of the 1920–1930s about the description of the motion of a material point of variable mass in a time-dependent gravitational field are reproduced.
doi_str_mv 10.1134/S0025654424602878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123360127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123360127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-49356a506aa31c4eaacac0358da786e2095e1b293022df9c50064f58c05fe2f03</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rk726OWq0KFQ9Wr0uanciWdrMm20O_vSkreBBPAzO_9-bxCLlkcM2YkDdvAFxpJSWXGnhVVkdkwoyQRWmEPiaTw7k43E_JWUprgExxNiHmJQxt6Gjw1NIPG1u72iC9C82etl1eLdstFvfYY9dgN9B5iA7pvMVNc05OvN0kvPiZU_I-f1jOnorF6-Pz7HZROGaqoZBGKG0VaGsFcxKtddaBUFVjy0ojB6OQrbgROU_jjVM5mvSqcqA8cg9iSq5G3z6Grx2moV6HXezyy1owLoQGxstMsZFyMaQU0dd9bLc27msG9aGh-k9DWcNHTcps94nx1_l_0TcL6mSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123360127</pqid></control><display><type>article</type><title>Motion of a Variable Body in a Time-Dependent Force Field</title><source>Springer Nature - Complete Springer Journals</source><creator>Burov, A. A. ; Nikonov, V. I.</creator><creatorcontrib>Burov, A. A. ; Nikonov, V. I.</creatorcontrib><description>The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion are reduced to classical equations that describe the motion of a rigid body in a force field that does not depend on time. There are cases when the equations of motion are reduced to completely integrable ones. Elements of the discussion of the 1920–1930s about the description of the motion of a material point of variable mass in a time-dependent gravitational field are reproduced.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.1134/S0025654424602878</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical Mechanics ; Equations of motion ; Gravitational fields ; Physics ; Physics and Astronomy ; Rigid structures ; Time dependence</subject><ispartof>Mechanics of solids, 2024-06, Vol.59 (3), p.1283-1289</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0025-6544, Mechanics of Solids, 2024, Vol. 59, No. 3, pp. 1283–1289. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-49356a506aa31c4eaacac0358da786e2095e1b293022df9c50064f58c05fe2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0025654424602878$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0025654424602878$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Burov, A. A.</creatorcontrib><creatorcontrib>Nikonov, V. I.</creatorcontrib><title>Motion of a Variable Body in a Time-Dependent Force Field</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion are reduced to classical equations that describe the motion of a rigid body in a force field that does not depend on time. There are cases when the equations of motion are reduced to completely integrable ones. Elements of the discussion of the 1920–1930s about the description of the motion of a material point of variable mass in a time-dependent gravitational field are reproduced.</description><subject>Classical Mechanics</subject><subject>Equations of motion</subject><subject>Gravitational fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rigid structures</subject><subject>Time dependence</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rk726OWq0KFQ9Wr0uanciWdrMm20O_vSkreBBPAzO_9-bxCLlkcM2YkDdvAFxpJSWXGnhVVkdkwoyQRWmEPiaTw7k43E_JWUprgExxNiHmJQxt6Gjw1NIPG1u72iC9C82etl1eLdstFvfYY9dgN9B5iA7pvMVNc05OvN0kvPiZU_I-f1jOnorF6-Pz7HZROGaqoZBGKG0VaGsFcxKtddaBUFVjy0ojB6OQrbgROU_jjVM5mvSqcqA8cg9iSq5G3z6Grx2moV6HXezyy1owLoQGxstMsZFyMaQU0dd9bLc27msG9aGh-k9DWcNHTcps94nx1_l_0TcL6mSY</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Burov, A. A.</creator><creator>Nikonov, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Motion of a Variable Body in a Time-Dependent Force Field</title><author>Burov, A. A. ; Nikonov, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-49356a506aa31c4eaacac0358da786e2095e1b293022df9c50064f58c05fe2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical Mechanics</topic><topic>Equations of motion</topic><topic>Gravitational fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rigid structures</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burov, A. A.</creatorcontrib><creatorcontrib>Nikonov, V. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burov, A. A.</au><au>Nikonov, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion of a Variable Body in a Time-Dependent Force Field</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>59</volume><issue>3</issue><spage>1283</spage><epage>1289</epage><pages>1283-1289</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion are reduced to classical equations that describe the motion of a rigid body in a force field that does not depend on time. There are cases when the equations of motion are reduced to completely integrable ones. Elements of the discussion of the 1920–1930s about the description of the motion of a material point of variable mass in a time-dependent gravitational field are reproduced.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0025654424602878</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6544
ispartof Mechanics of solids, 2024-06, Vol.59 (3), p.1283-1289
issn 0025-6544
1934-7936
language eng
recordid cdi_proquest_journals_3123360127
source Springer Nature - Complete Springer Journals
subjects Classical Mechanics
Equations of motion
Gravitational fields
Physics
Physics and Astronomy
Rigid structures
Time dependence
title Motion of a Variable Body in a Time-Dependent Force Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20of%20a%20Variable%20Body%20in%20a%20Time-Dependent%20Force%20Field&rft.jtitle=Mechanics%20of%20solids&rft.au=Burov,%20A.%20A.&rft.date=2024-06-01&rft.volume=59&rft.issue=3&rft.spage=1283&rft.epage=1289&rft.pages=1283-1289&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.1134/S0025654424602878&rft_dat=%3Cproquest_cross%3E3123360127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123360127&rft_id=info:pmid/&rfr_iscdi=true