Motion of a Variable Body in a Time-Dependent Force Field
The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion ar...
Gespeichert in:
Veröffentlicht in: | Mechanics of solids 2024-06, Vol.59 (3), p.1283-1289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1289 |
---|---|
container_issue | 3 |
container_start_page | 1283 |
container_title | Mechanics of solids |
container_volume | 59 |
creator | Burov, A. A. Nikonov, V. I. |
description | The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion are reduced to classical equations that describe the motion of a rigid body in a force field that does not depend on time. There are cases when the equations of motion are reduced to completely integrable ones. Elements of the discussion of the 1920–1930s about the description of the motion of a material point of variable mass in a time-dependent gravitational field are reproduced. |
doi_str_mv | 10.1134/S0025654424602878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123360127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123360127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-49356a506aa31c4eaacac0358da786e2095e1b293022df9c50064f58c05fe2f03</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rk726OWq0KFQ9Wr0uanciWdrMm20O_vSkreBBPAzO_9-bxCLlkcM2YkDdvAFxpJSWXGnhVVkdkwoyQRWmEPiaTw7k43E_JWUprgExxNiHmJQxt6Gjw1NIPG1u72iC9C82etl1eLdstFvfYY9dgN9B5iA7pvMVNc05OvN0kvPiZU_I-f1jOnorF6-Pz7HZROGaqoZBGKG0VaGsFcxKtddaBUFVjy0ojB6OQrbgROU_jjVM5mvSqcqA8cg9iSq5G3z6Grx2moV6HXezyy1owLoQGxstMsZFyMaQU0dd9bLc27msG9aGh-k9DWcNHTcps94nx1_l_0TcL6mSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123360127</pqid></control><display><type>article</type><title>Motion of a Variable Body in a Time-Dependent Force Field</title><source>Springer Nature - Complete Springer Journals</source><creator>Burov, A. A. ; Nikonov, V. I.</creator><creatorcontrib>Burov, A. A. ; Nikonov, V. I.</creatorcontrib><description>The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion are reduced to classical equations that describe the motion of a rigid body in a force field that does not depend on time. There are cases when the equations of motion are reduced to completely integrable ones. Elements of the discussion of the 1920–1930s about the description of the motion of a material point of variable mass in a time-dependent gravitational field are reproduced.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.1134/S0025654424602878</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical Mechanics ; Equations of motion ; Gravitational fields ; Physics ; Physics and Astronomy ; Rigid structures ; Time dependence</subject><ispartof>Mechanics of solids, 2024-06, Vol.59 (3), p.1283-1289</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0025-6544, Mechanics of Solids, 2024, Vol. 59, No. 3, pp. 1283–1289. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-49356a506aa31c4eaacac0358da786e2095e1b293022df9c50064f58c05fe2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0025654424602878$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0025654424602878$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Burov, A. A.</creatorcontrib><creatorcontrib>Nikonov, V. I.</creatorcontrib><title>Motion of a Variable Body in a Time-Dependent Force Field</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion are reduced to classical equations that describe the motion of a rigid body in a force field that does not depend on time. There are cases when the equations of motion are reduced to completely integrable ones. Elements of the discussion of the 1920–1930s about the description of the motion of a material point of variable mass in a time-dependent gravitational field are reproduced.</description><subject>Classical Mechanics</subject><subject>Equations of motion</subject><subject>Gravitational fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rigid structures</subject><subject>Time dependence</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-rk726OWq0KFQ9Wr0uanciWdrMm20O_vSkreBBPAzO_9-bxCLlkcM2YkDdvAFxpJSWXGnhVVkdkwoyQRWmEPiaTw7k43E_JWUprgExxNiHmJQxt6Gjw1NIPG1u72iC9C82etl1eLdstFvfYY9dgN9B5iA7pvMVNc05OvN0kvPiZU_I-f1jOnorF6-Pz7HZROGaqoZBGKG0VaGsFcxKtddaBUFVjy0ojB6OQrbgROU_jjVM5mvSqcqA8cg9iSq5G3z6Grx2moV6HXezyy1owLoQGxstMsZFyMaQU0dd9bLc27msG9aGh-k9DWcNHTcps94nx1_l_0TcL6mSY</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Burov, A. A.</creator><creator>Nikonov, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Motion of a Variable Body in a Time-Dependent Force Field</title><author>Burov, A. A. ; Nikonov, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-49356a506aa31c4eaacac0358da786e2095e1b293022df9c50064f58c05fe2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical Mechanics</topic><topic>Equations of motion</topic><topic>Gravitational fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rigid structures</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burov, A. A.</creatorcontrib><creatorcontrib>Nikonov, V. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burov, A. A.</au><au>Nikonov, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion of a Variable Body in a Time-Dependent Force Field</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>59</volume><issue>3</issue><spage>1283</spage><epage>1289</epage><pages>1283-1289</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>The problem of translational-rotational motion of a variable body is considered under the assumption that the inertial properties of the body, as well as the external forces and torques acting on it, explicitly depend on explicitly. The conditions are indicated under which the equations of motion are reduced to classical equations that describe the motion of a rigid body in a force field that does not depend on time. There are cases when the equations of motion are reduced to completely integrable ones. Elements of the discussion of the 1920–1930s about the description of the motion of a material point of variable mass in a time-dependent gravitational field are reproduced.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0025654424602878</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-6544 |
ispartof | Mechanics of solids, 2024-06, Vol.59 (3), p.1283-1289 |
issn | 0025-6544 1934-7936 |
language | eng |
recordid | cdi_proquest_journals_3123360127 |
source | Springer Nature - Complete Springer Journals |
subjects | Classical Mechanics Equations of motion Gravitational fields Physics Physics and Astronomy Rigid structures Time dependence |
title | Motion of a Variable Body in a Time-Dependent Force Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20of%20a%20Variable%20Body%20in%20a%20Time-Dependent%20Force%20Field&rft.jtitle=Mechanics%20of%20solids&rft.au=Burov,%20A.%20A.&rft.date=2024-06-01&rft.volume=59&rft.issue=3&rft.spage=1283&rft.epage=1289&rft.pages=1283-1289&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.1134/S0025654424602878&rft_dat=%3Cproquest_cross%3E3123360127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123360127&rft_id=info:pmid/&rfr_iscdi=true |