DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion

Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Ye, Weicai, Ji, Chenhao, Chen, Zheng, Gao, Junyao, Huang, Xiaoshui, Song-Hai, Zhang, Ouyang, Wanli, He, Tong, Zhao, Cairong, Zhang, Guofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ye, Weicai
Ji, Chenhao
Chen, Zheng
Gao, Junyao
Huang, Xiaoshui
Song-Hai, Zhang
Ouyang, Wanli
He, Tong
Zhao, Cairong
Zhang, Guofeng
description Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3123154781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123154781</sourcerecordid><originalsourceid>FETCH-proquest_journals_31231547813</originalsourceid><addsrcrecordid>eNqNzMEKgkAUBdAhCJLyHx60FnRGU9qFWS0D28urnjhiMzYzYp-fQh_Q6i7uuXfBPC5EFGQx5yvmW9uGYch3KU8S4TE6yrq-otJ7KB_Y4b0jQPWEXCsrrSPl4EYfB07DrAy-EM6kyKCTWsEoXQNl35CR0xqKXva6QxMcRjQE8_dgJ7dhyxo7S_4v12x7Km75JeiNfg9kXdXqwaipqkTERZTEaRaJ_9QXJN5GXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123154781</pqid></control><display><type>article</type><title>DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion</title><source>Free E- Journals</source><creator>Ye, Weicai ; Ji, Chenhao ; Chen, Zheng ; Gao, Junyao ; Huang, Xiaoshui ; Song-Hai, Zhang ; Ouyang, Wanli ; He, Tong ; Zhao, Cairong ; Zhang, Guofeng</creator><creatorcontrib>Ye, Weicai ; Ji, Chenhao ; Chen, Zheng ; Gao, Junyao ; Huang, Xiaoshui ; Song-Hai, Zhang ; Ouyang, Wanli ; He, Tong ; Zhao, Cairong ; Zhang, Guofeng</creatorcontrib><description>Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Datasets ; Descriptions ; Object generation ; Scene generation</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ye, Weicai</creatorcontrib><creatorcontrib>Ji, Chenhao</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Gao, Junyao</creatorcontrib><creatorcontrib>Huang, Xiaoshui</creatorcontrib><creatorcontrib>Song-Hai, Zhang</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>He, Tong</creatorcontrib><creatorcontrib>Zhao, Cairong</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><title>DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion</title><title>arXiv.org</title><description>Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses.</description><subject>Cameras</subject><subject>Datasets</subject><subject>Descriptions</subject><subject>Object generation</subject><subject>Scene generation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzMEKgkAUBdAhCJLyHx60FnRGU9qFWS0D28urnjhiMzYzYp-fQh_Q6i7uuXfBPC5EFGQx5yvmW9uGYch3KU8S4TE6yrq-otJ7KB_Y4b0jQPWEXCsrrSPl4EYfB07DrAy-EM6kyKCTWsEoXQNl35CR0xqKXva6QxMcRjQE8_dgJ7dhyxo7S_4v12x7Km75JeiNfg9kXdXqwaipqkTERZTEaRaJ_9QXJN5GXw</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Ye, Weicai</creator><creator>Ji, Chenhao</creator><creator>Chen, Zheng</creator><creator>Gao, Junyao</creator><creator>Huang, Xiaoshui</creator><creator>Song-Hai, Zhang</creator><creator>Ouyang, Wanli</creator><creator>He, Tong</creator><creator>Zhao, Cairong</creator><creator>Zhang, Guofeng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion</title><author>Ye, Weicai ; Ji, Chenhao ; Chen, Zheng ; Gao, Junyao ; Huang, Xiaoshui ; Song-Hai, Zhang ; Ouyang, Wanli ; He, Tong ; Zhao, Cairong ; Zhang, Guofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31231547813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Datasets</topic><topic>Descriptions</topic><topic>Object generation</topic><topic>Scene generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Ye, Weicai</creatorcontrib><creatorcontrib>Ji, Chenhao</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Gao, Junyao</creatorcontrib><creatorcontrib>Huang, Xiaoshui</creatorcontrib><creatorcontrib>Song-Hai, Zhang</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>He, Tong</creatorcontrib><creatorcontrib>Zhao, Cairong</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Weicai</au><au>Ji, Chenhao</au><au>Chen, Zheng</au><au>Gao, Junyao</au><au>Huang, Xiaoshui</au><au>Song-Hai, Zhang</au><au>Ouyang, Wanli</au><au>He, Tong</au><au>Zhao, Cairong</au><au>Zhang, Guofeng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3123154781
source Free E- Journals
subjects Cameras
Datasets
Descriptions
Object generation
Scene generation
title DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DiffPano:%20Scalable%20and%20Consistent%20Text%20to%20Panorama%20Generation%20with%20Spherical%20Epipolar-Aware%20Diffusion&rft.jtitle=arXiv.org&rft.au=Ye,%20Weicai&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3123154781%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123154781&rft_id=info:pmid/&rfr_iscdi=true