DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion
Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of gene...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ye, Weicai Ji, Chenhao Chen, Zheng Gao, Junyao Huang, Xiaoshui Song-Hai, Zhang Ouyang, Wanli He, Tong Zhao, Cairong Zhang, Guofeng |
description | Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3123154781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123154781</sourcerecordid><originalsourceid>FETCH-proquest_journals_31231547813</originalsourceid><addsrcrecordid>eNqNzMEKgkAUBdAhCJLyHx60FnRGU9qFWS0D28urnjhiMzYzYp-fQh_Q6i7uuXfBPC5EFGQx5yvmW9uGYch3KU8S4TE6yrq-otJ7KB_Y4b0jQPWEXCsrrSPl4EYfB07DrAy-EM6kyKCTWsEoXQNl35CR0xqKXva6QxMcRjQE8_dgJ7dhyxo7S_4v12x7Km75JeiNfg9kXdXqwaipqkTERZTEaRaJ_9QXJN5GXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123154781</pqid></control><display><type>article</type><title>DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion</title><source>Free E- Journals</source><creator>Ye, Weicai ; Ji, Chenhao ; Chen, Zheng ; Gao, Junyao ; Huang, Xiaoshui ; Song-Hai, Zhang ; Ouyang, Wanli ; He, Tong ; Zhao, Cairong ; Zhang, Guofeng</creator><creatorcontrib>Ye, Weicai ; Ji, Chenhao ; Chen, Zheng ; Gao, Junyao ; Huang, Xiaoshui ; Song-Hai, Zhang ; Ouyang, Wanli ; He, Tong ; Zhao, Cairong ; Zhang, Guofeng</creatorcontrib><description>Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Datasets ; Descriptions ; Object generation ; Scene generation</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ye, Weicai</creatorcontrib><creatorcontrib>Ji, Chenhao</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Gao, Junyao</creatorcontrib><creatorcontrib>Huang, Xiaoshui</creatorcontrib><creatorcontrib>Song-Hai, Zhang</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>He, Tong</creatorcontrib><creatorcontrib>Zhao, Cairong</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><title>DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion</title><title>arXiv.org</title><description>Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses.</description><subject>Cameras</subject><subject>Datasets</subject><subject>Descriptions</subject><subject>Object generation</subject><subject>Scene generation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzMEKgkAUBdAhCJLyHx60FnRGU9qFWS0D28urnjhiMzYzYp-fQh_Q6i7uuXfBPC5EFGQx5yvmW9uGYch3KU8S4TE6yrq-otJ7KB_Y4b0jQPWEXCsrrSPl4EYfB07DrAy-EM6kyKCTWsEoXQNl35CR0xqKXva6QxMcRjQE8_dgJ7dhyxo7S_4v12x7Km75JeiNfg9kXdXqwaipqkTERZTEaRaJ_9QXJN5GXw</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Ye, Weicai</creator><creator>Ji, Chenhao</creator><creator>Chen, Zheng</creator><creator>Gao, Junyao</creator><creator>Huang, Xiaoshui</creator><creator>Song-Hai, Zhang</creator><creator>Ouyang, Wanli</creator><creator>He, Tong</creator><creator>Zhao, Cairong</creator><creator>Zhang, Guofeng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion</title><author>Ye, Weicai ; Ji, Chenhao ; Chen, Zheng ; Gao, Junyao ; Huang, Xiaoshui ; Song-Hai, Zhang ; Ouyang, Wanli ; He, Tong ; Zhao, Cairong ; Zhang, Guofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31231547813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Datasets</topic><topic>Descriptions</topic><topic>Object generation</topic><topic>Scene generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Ye, Weicai</creatorcontrib><creatorcontrib>Ji, Chenhao</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Gao, Junyao</creatorcontrib><creatorcontrib>Huang, Xiaoshui</creatorcontrib><creatorcontrib>Song-Hai, Zhang</creatorcontrib><creatorcontrib>Ouyang, Wanli</creatorcontrib><creatorcontrib>He, Tong</creatorcontrib><creatorcontrib>Zhao, Cairong</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Weicai</au><au>Ji, Chenhao</au><au>Chen, Zheng</au><au>Gao, Junyao</au><au>Huang, Xiaoshui</au><au>Song-Hai, Zhang</au><au>Ouyang, Wanli</au><au>He, Tong</au><au>Zhao, Cairong</au><au>Zhang, Guofeng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Diffusion-based methods have achieved remarkable achievements in 2D image or 3D object generation, however, the generation of 3D scenes and even \(360^{\circ}\) images remains constrained, due to the limited number of scene datasets, the complexity of 3D scenes themselves, and the difficulty of generating consistent multi-view images. To address these issues, we first establish a large-scale panoramic video-text dataset containing millions of consecutive panoramic keyframes with corresponding panoramic depths, camera poses, and text descriptions. Then, we propose a novel text-driven panoramic generation framework, termed DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation. Specifically, benefiting from the powerful generative capabilities of stable diffusion, we fine-tune a single-view text-to-panorama diffusion model with LoRA on the established panoramic video-text dataset. We further design a spherical epipolar-aware multi-view diffusion model to ensure the multi-view consistency of the generated panoramic images. Extensive experiments demonstrate that DiffPano can generate scalable, consistent, and diverse panoramic images with given unseen text descriptions and camera poses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3123154781 |
source | Free E- Journals |
subjects | Cameras Datasets Descriptions Object generation Scene generation |
title | DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DiffPano:%20Scalable%20and%20Consistent%20Text%20to%20Panorama%20Generation%20with%20Spherical%20Epipolar-Aware%20Diffusion&rft.jtitle=arXiv.org&rft.au=Ye,%20Weicai&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3123154781%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123154781&rft_id=info:pmid/&rfr_iscdi=true |