Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis

In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes. This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Jia Lin Hau, Delage, Erick, Derman, Esther, Ghavamzadeh, Mohammad, Petrik, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jia Lin Hau
Delage, Erick
Derman, Esther
Ghavamzadeh, Mohammad
Petrik, Marek
description In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes. This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees. The algorithm leverages a new, simple dynamic program (DP) decomposition for quantile MDPs. Compared with prior work, our DP decomposition requires neither known transition probabilities nor solving complex saddle point equations and serves as a suitable foundation for other model-free RL algorithms. Our numerical results in tabular domains show that our Q-learning algorithm converges to its DP variant and outperforms earlier algorithms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3123154525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123154525</sourcerecordid><originalsourceid>FETCH-proquest_journals_31231545253</originalsourceid><addsrcrecordid>eNqNysEKgkAUQNEhCJLyHx60VdAZp6KdaNEmMHAvgz1lRGdsngb9fS76gFYXLmfFPC5EHJ4SzjfMJ-qiKOKHI5dSeKx8hD0qZ7RpobEOHrMyk-4R7nlBZ0ghx9oOoyU9aWsCKNAtbFCmxgCUeUJmzRtdi8uA1Kj-Q5p2bN2ontD_dcv210uZ3cLR2deMNFWdnd2CqRIxF7FMJJfiP_UF5wk_aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123154525</pqid></control><display><type>article</type><title>Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis</title><source>Free E- Journals</source><creator>Jia Lin Hau ; Delage, Erick ; Derman, Esther ; Ghavamzadeh, Mohammad ; Petrik, Marek</creator><creatorcontrib>Jia Lin Hau ; Delage, Erick ; Derman, Esther ; Ghavamzadeh, Mohammad ; Petrik, Marek</creatorcontrib><description>In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes. This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees. The algorithm leverages a new, simple dynamic program (DP) decomposition for quantile MDPs. Compared with prior work, our DP decomposition requires neither known transition probabilities nor solving complex saddle point equations and serves as a suitable foundation for other model-free RL algorithms. Our numerical results in tabular domains show that our Q-learning algorithm converges to its DP variant and outperforms earlier algorithms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convergence ; Decomposition ; Machine learning ; Markov processes ; Quantiles ; Saddle points ; Transition probabilities</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jia Lin Hau</creatorcontrib><creatorcontrib>Delage, Erick</creatorcontrib><creatorcontrib>Derman, Esther</creatorcontrib><creatorcontrib>Ghavamzadeh, Mohammad</creatorcontrib><creatorcontrib>Petrik, Marek</creatorcontrib><title>Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis</title><title>arXiv.org</title><description>In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes. This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees. The algorithm leverages a new, simple dynamic program (DP) decomposition for quantile MDPs. Compared with prior work, our DP decomposition requires neither known transition probabilities nor solving complex saddle point equations and serves as a suitable foundation for other model-free RL algorithms. Our numerical results in tabular domains show that our Q-learning algorithm converges to its DP variant and outperforms earlier algorithms.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Quantiles</subject><subject>Saddle points</subject><subject>Transition probabilities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAUQNEhCJLyHx60VdAZp6KdaNEmMHAvgz1lRGdsngb9fS76gFYXLmfFPC5EHJ4SzjfMJ-qiKOKHI5dSeKx8hD0qZ7RpobEOHrMyk-4R7nlBZ0ghx9oOoyU9aWsCKNAtbFCmxgCUeUJmzRtdi8uA1Kj-Q5p2bN2ontD_dcv210uZ3cLR2deMNFWdnd2CqRIxF7FMJJfiP_UF5wk_aw</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Jia Lin Hau</creator><creator>Delage, Erick</creator><creator>Derman, Esther</creator><creator>Ghavamzadeh, Mohammad</creator><creator>Petrik, Marek</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis</title><author>Jia Lin Hau ; Delage, Erick ; Derman, Esther ; Ghavamzadeh, Mohammad ; Petrik, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31231545253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Quantiles</topic><topic>Saddle points</topic><topic>Transition probabilities</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia Lin Hau</creatorcontrib><creatorcontrib>Delage, Erick</creatorcontrib><creatorcontrib>Derman, Esther</creatorcontrib><creatorcontrib>Ghavamzadeh, Mohammad</creatorcontrib><creatorcontrib>Petrik, Marek</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia Lin Hau</au><au>Delage, Erick</au><au>Derman, Esther</au><au>Ghavamzadeh, Mohammad</au><au>Petrik, Marek</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes. This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees. The algorithm leverages a new, simple dynamic program (DP) decomposition for quantile MDPs. Compared with prior work, our DP decomposition requires neither known transition probabilities nor solving complex saddle point equations and serves as a suitable foundation for other model-free RL algorithms. Our numerical results in tabular domains show that our Q-learning algorithm converges to its DP variant and outperforms earlier algorithms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3123154525
source Free E- Journals
subjects Algorithms
Convergence
Decomposition
Machine learning
Markov processes
Quantiles
Saddle points
Transition probabilities
title Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Q-learning%20for%20Quantile%20MDPs:%20A%20Decomposition,%20Performance,%20and%20Convergence%20Analysis&rft.jtitle=arXiv.org&rft.au=Jia%20Lin%20Hau&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3123154525%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123154525&rft_id=info:pmid/&rfr_iscdi=true