Two-particle calculations with quantics tensor trains -- solving the parquet equations

We present the first application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show that the steps needed to evaluate the equations (Bethe--Salpeter equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Rohshap, Stefan, Ritter, Marc K, Shinaoka, Hiroshi, Jan von Delft, Wallerberger, Markus, Kauch, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rohshap, Stefan
Ritter, Marc K
Shinaoka, Hiroshi
Jan von Delft
Wallerberger, Markus
Kauch, Anna
description We present the first application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show that the steps needed to evaluate the equations (Bethe--Salpeter equations, parquet equation and Schwinger--Dyson equation) can be decomposed into basic operations on the QTT-TCI (QTCI) compressed objects. The repeated application of these operations does not lead to a loss of accuracy beyond a specified tolerance and the iterative scheme converges even for numerically demanding parameters. As examples we take the Hubbard model in the atomic limit and the single impurity Anderson model, where the basic objects in parquet equations, the two-particle vertices, depend on three frequencies, but not on momenta. The results show that this approach is able to overcome major computational bottlenecks of standard numerical methods. The applied methods allow for an exponential increase of the number of grid points included in the calculations leading to an exponentially improving computational error for a linear increase in computational cost.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3122763654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122763654</sourcerecordid><originalsourceid>FETCH-proquest_journals_31227636543</originalsourceid><addsrcrecordid>eNqNjEsKwjAURYMgWLR7eOA40Cb9OBfFBRSnJZTYpoSkzXux2zeIC3B0B-ecu2OZkLLkl0qIA8sR56IoRNOKupYZe3ab54sKZAarYVB2iFaR8Q5hMzTBGpVLDIG0Qx-AgjKJcQ7o7du4EWjSkA7WqAl00r_xie1fyqLOf3tk5_utuz74EnwykfrZx-AS6mUpRNvIpq7kf9YHdLJB7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122763654</pqid></control><display><type>article</type><title>Two-particle calculations with quantics tensor trains -- solving the parquet equations</title><source>Free E- Journals</source><creator>Rohshap, Stefan ; Ritter, Marc K ; Shinaoka, Hiroshi ; Jan von Delft ; Wallerberger, Markus ; Kauch, Anna</creator><creatorcontrib>Rohshap, Stefan ; Ritter, Marc K ; Shinaoka, Hiroshi ; Jan von Delft ; Wallerberger, Markus ; Kauch, Anna</creatorcontrib><description>We present the first application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show that the steps needed to evaluate the equations (Bethe--Salpeter equations, parquet equation and Schwinger--Dyson equation) can be decomposed into basic operations on the QTT-TCI (QTCI) compressed objects. The repeated application of these operations does not lead to a loss of accuracy beyond a specified tolerance and the iterative scheme converges even for numerically demanding parameters. As examples we take the Hubbard model in the atomic limit and the single impurity Anderson model, where the basic objects in parquet equations, the two-particle vertices, depend on three frequencies, but not on momenta. The results show that this approach is able to overcome major computational bottlenecks of standard numerical methods. The applied methods allow for an exponential increase of the number of grid points included in the calculations leading to an exponentially improving computational error for a linear increase in computational cost.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Atomic properties ; Basic converters ; Computing costs ; Mathematical analysis ; Numerical methods ; Tensors</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Rohshap, Stefan</creatorcontrib><creatorcontrib>Ritter, Marc K</creatorcontrib><creatorcontrib>Shinaoka, Hiroshi</creatorcontrib><creatorcontrib>Jan von Delft</creatorcontrib><creatorcontrib>Wallerberger, Markus</creatorcontrib><creatorcontrib>Kauch, Anna</creatorcontrib><title>Two-particle calculations with quantics tensor trains -- solving the parquet equations</title><title>arXiv.org</title><description>We present the first application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show that the steps needed to evaluate the equations (Bethe--Salpeter equations, parquet equation and Schwinger--Dyson equation) can be decomposed into basic operations on the QTT-TCI (QTCI) compressed objects. The repeated application of these operations does not lead to a loss of accuracy beyond a specified tolerance and the iterative scheme converges even for numerically demanding parameters. As examples we take the Hubbard model in the atomic limit and the single impurity Anderson model, where the basic objects in parquet equations, the two-particle vertices, depend on three frequencies, but not on momenta. The results show that this approach is able to overcome major computational bottlenecks of standard numerical methods. The applied methods allow for an exponential increase of the number of grid points included in the calculations leading to an exponentially improving computational error for a linear increase in computational cost.</description><subject>Apexes</subject><subject>Atomic properties</subject><subject>Basic converters</subject><subject>Computing costs</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwjAURYMgWLR7eOA40Cb9OBfFBRSnJZTYpoSkzXux2zeIC3B0B-ecu2OZkLLkl0qIA8sR56IoRNOKupYZe3ab54sKZAarYVB2iFaR8Q5hMzTBGpVLDIG0Qx-AgjKJcQ7o7du4EWjSkA7WqAl00r_xie1fyqLOf3tk5_utuz74EnwykfrZx-AS6mUpRNvIpq7kf9YHdLJB7g</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Rohshap, Stefan</creator><creator>Ritter, Marc K</creator><creator>Shinaoka, Hiroshi</creator><creator>Jan von Delft</creator><creator>Wallerberger, Markus</creator><creator>Kauch, Anna</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241203</creationdate><title>Two-particle calculations with quantics tensor trains -- solving the parquet equations</title><author>Rohshap, Stefan ; Ritter, Marc K ; Shinaoka, Hiroshi ; Jan von Delft ; Wallerberger, Markus ; Kauch, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31227636543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Atomic properties</topic><topic>Basic converters</topic><topic>Computing costs</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Rohshap, Stefan</creatorcontrib><creatorcontrib>Ritter, Marc K</creatorcontrib><creatorcontrib>Shinaoka, Hiroshi</creatorcontrib><creatorcontrib>Jan von Delft</creatorcontrib><creatorcontrib>Wallerberger, Markus</creatorcontrib><creatorcontrib>Kauch, Anna</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohshap, Stefan</au><au>Ritter, Marc K</au><au>Shinaoka, Hiroshi</au><au>Jan von Delft</au><au>Wallerberger, Markus</au><au>Kauch, Anna</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Two-particle calculations with quantics tensor trains -- solving the parquet equations</atitle><jtitle>arXiv.org</jtitle><date>2024-12-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present the first application of quantics tensor trains (QTTs) and tensor cross interpolation (TCI) to the solution of a full set of self-consistent equations for multivariate functions, the so-called parquet equations. We show that the steps needed to evaluate the equations (Bethe--Salpeter equations, parquet equation and Schwinger--Dyson equation) can be decomposed into basic operations on the QTT-TCI (QTCI) compressed objects. The repeated application of these operations does not lead to a loss of accuracy beyond a specified tolerance and the iterative scheme converges even for numerically demanding parameters. As examples we take the Hubbard model in the atomic limit and the single impurity Anderson model, where the basic objects in parquet equations, the two-particle vertices, depend on three frequencies, but not on momenta. The results show that this approach is able to overcome major computational bottlenecks of standard numerical methods. The applied methods allow for an exponential increase of the number of grid points included in the calculations leading to an exponentially improving computational error for a linear increase in computational cost.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3122763654
source Free E- Journals
subjects Apexes
Atomic properties
Basic converters
Computing costs
Mathematical analysis
Numerical methods
Tensors
title Two-particle calculations with quantics tensor trains -- solving the parquet equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Two-particle%20calculations%20with%20quantics%20tensor%20trains%20--%20solving%20the%20parquet%20equations&rft.jtitle=arXiv.org&rft.au=Rohshap,%20Stefan&rft.date=2024-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3122763654%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122763654&rft_id=info:pmid/&rfr_iscdi=true