Constitutive sodium permeability in a Caenorhabditis elegans two-pore domain potassium channel

Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-10, Vol.121 (43), p.1
Hauptverfasser: Andrini, Olga, Ben Soussia, Ismail, Tardy, Philippe, Walker, Denise S., Peña-Varas, Carlos, Ramírez, David, Gendrel, Marie, Mercier, Marine, El Mouridi, Sonia, Leclercq-Blondel, Alice, González, Wendy, Schafer, William R., Jospin, Maelle, Boulin, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 43
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Andrini, Olga
Ben Soussia, Ismail
Tardy, Philippe
Walker, Denise S.
Peña-Varas, Carlos
Ramírez, David
Gendrel, Marie
Mercier, Marine
El Mouridi, Sonia
Leclercq-Blondel, Alice
González, Wendy
Schafer, William R.
Jospin, Maelle
Boulin, Thomas
description Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca 2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.
doi_str_mv 10.1073/pnas.2400650121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3122693547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122693547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c153t-bafba2ac41a0afaf0797677e67408134330cc082bb14b1bf11b18cc4bae880213</originalsourceid><addsrcrecordid>eNpFkM9LwzAYhoMoOKdnrwHP3b4vSZv2KMVfMPCiV8uXLnUZbVOTTNl_78YET-_l4XnhYewWYYGg5XIaKS6EAihyQIFnbIZQYVaoCs7ZDEDorFRCXbKrGLcAUOUlzNhH7ceYXNol92159Gu3G_hkw2DJuN6lPXcjJ16THX3YkFm75CK3vf2kMfL047PJB8vXfqADOPlEMR4V7YbG0fbX7KKjPtqbv52z98eHt_o5W70-vdT3q6zFXKbMUGdIUKuQgDrqQFe60NoWWkGJUkkJbQulMAaVQdMhGizbVhmyZQkC5ZzdnbxT8F87G1Oz9bswHi4biUIUlcyVPlDLE9UGH2OwXTMFN1DYNwjNMWJzjNj8R5S_I6lnDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122693547</pqid></control><display><type>article</type><title>Constitutive sodium permeability in a Caenorhabditis elegans two-pore domain potassium channel</title><source>Alma/SFX Local Collection</source><creator>Andrini, Olga ; Ben Soussia, Ismail ; Tardy, Philippe ; Walker, Denise S. ; Peña-Varas, Carlos ; Ramírez, David ; Gendrel, Marie ; Mercier, Marine ; El Mouridi, Sonia ; Leclercq-Blondel, Alice ; González, Wendy ; Schafer, William R. ; Jospin, Maelle ; Boulin, Thomas</creator><creatorcontrib>Andrini, Olga ; Ben Soussia, Ismail ; Tardy, Philippe ; Walker, Denise S. ; Peña-Varas, Carlos ; Ramírez, David ; Gendrel, Marie ; Mercier, Marine ; El Mouridi, Sonia ; Leclercq-Blondel, Alice ; González, Wendy ; Schafer, William R. ; Jospin, Maelle ; Boulin, Thomas</creatorcontrib><description>Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca 2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2400650121</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Calcium imaging ; Calcium ions ; Calcium permeability ; Cell membranes ; Cellular structure ; Cysteine ; Depolarization ; Evolutionary genetics ; Excitability ; Gametocytes ; In vivo methods and tests ; Ions ; Membrane permeability ; Molecular dynamics ; Muscles ; Mutants ; Oocytes ; Permeability ; Phenotypes ; Potassium ; Potassium channels ; Residues ; Selectivity ; Sensory neurons ; Sodium ; Structure-function relationships</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-10, Vol.121 (43), p.1</ispartof><rights>Copyright National Academy of Sciences Oct 22, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c153t-bafba2ac41a0afaf0797677e67408134330cc082bb14b1bf11b18cc4bae880213</cites><orcidid>0000-0002-1734-1915 ; 0000-0003-0002-1189 ; 0000-0002-1694-4394 ; 0000-0002-6676-8034 ; 0009-0002-2179-480X ; 0000-0002-0991-0479 ; 0000-0002-7535-6883 ; 0000-0001-7659-4771 ; 0000-0003-1534-1679 ; 0000-0003-2741-8813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Andrini, Olga</creatorcontrib><creatorcontrib>Ben Soussia, Ismail</creatorcontrib><creatorcontrib>Tardy, Philippe</creatorcontrib><creatorcontrib>Walker, Denise S.</creatorcontrib><creatorcontrib>Peña-Varas, Carlos</creatorcontrib><creatorcontrib>Ramírez, David</creatorcontrib><creatorcontrib>Gendrel, Marie</creatorcontrib><creatorcontrib>Mercier, Marine</creatorcontrib><creatorcontrib>El Mouridi, Sonia</creatorcontrib><creatorcontrib>Leclercq-Blondel, Alice</creatorcontrib><creatorcontrib>González, Wendy</creatorcontrib><creatorcontrib>Schafer, William R.</creatorcontrib><creatorcontrib>Jospin, Maelle</creatorcontrib><creatorcontrib>Boulin, Thomas</creatorcontrib><title>Constitutive sodium permeability in a Caenorhabditis elegans two-pore domain potassium channel</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca 2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.</description><subject>Calcium imaging</subject><subject>Calcium ions</subject><subject>Calcium permeability</subject><subject>Cell membranes</subject><subject>Cellular structure</subject><subject>Cysteine</subject><subject>Depolarization</subject><subject>Evolutionary genetics</subject><subject>Excitability</subject><subject>Gametocytes</subject><subject>In vivo methods and tests</subject><subject>Ions</subject><subject>Membrane permeability</subject><subject>Molecular dynamics</subject><subject>Muscles</subject><subject>Mutants</subject><subject>Oocytes</subject><subject>Permeability</subject><subject>Phenotypes</subject><subject>Potassium</subject><subject>Potassium channels</subject><subject>Residues</subject><subject>Selectivity</subject><subject>Sensory neurons</subject><subject>Sodium</subject><subject>Structure-function relationships</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkM9LwzAYhoMoOKdnrwHP3b4vSZv2KMVfMPCiV8uXLnUZbVOTTNl_78YET-_l4XnhYewWYYGg5XIaKS6EAihyQIFnbIZQYVaoCs7ZDEDorFRCXbKrGLcAUOUlzNhH7ceYXNol92159Gu3G_hkw2DJuN6lPXcjJ16THX3YkFm75CK3vf2kMfL047PJB8vXfqADOPlEMR4V7YbG0fbX7KKjPtqbv52z98eHt_o5W70-vdT3q6zFXKbMUGdIUKuQgDrqQFe60NoWWkGJUkkJbQulMAaVQdMhGizbVhmyZQkC5ZzdnbxT8F87G1Oz9bswHi4biUIUlcyVPlDLE9UGH2OwXTMFN1DYNwjNMWJzjNj8R5S_I6lnDA</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Andrini, Olga</creator><creator>Ben Soussia, Ismail</creator><creator>Tardy, Philippe</creator><creator>Walker, Denise S.</creator><creator>Peña-Varas, Carlos</creator><creator>Ramírez, David</creator><creator>Gendrel, Marie</creator><creator>Mercier, Marine</creator><creator>El Mouridi, Sonia</creator><creator>Leclercq-Blondel, Alice</creator><creator>González, Wendy</creator><creator>Schafer, William R.</creator><creator>Jospin, Maelle</creator><creator>Boulin, Thomas</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-1734-1915</orcidid><orcidid>https://orcid.org/0000-0003-0002-1189</orcidid><orcidid>https://orcid.org/0000-0002-1694-4394</orcidid><orcidid>https://orcid.org/0000-0002-6676-8034</orcidid><orcidid>https://orcid.org/0009-0002-2179-480X</orcidid><orcidid>https://orcid.org/0000-0002-0991-0479</orcidid><orcidid>https://orcid.org/0000-0002-7535-6883</orcidid><orcidid>https://orcid.org/0000-0001-7659-4771</orcidid><orcidid>https://orcid.org/0000-0003-1534-1679</orcidid><orcidid>https://orcid.org/0000-0003-2741-8813</orcidid></search><sort><creationdate>20241022</creationdate><title>Constitutive sodium permeability in a Caenorhabditis elegans two-pore domain potassium channel</title><author>Andrini, Olga ; Ben Soussia, Ismail ; Tardy, Philippe ; Walker, Denise S. ; Peña-Varas, Carlos ; Ramírez, David ; Gendrel, Marie ; Mercier, Marine ; El Mouridi, Sonia ; Leclercq-Blondel, Alice ; González, Wendy ; Schafer, William R. ; Jospin, Maelle ; Boulin, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c153t-bafba2ac41a0afaf0797677e67408134330cc082bb14b1bf11b18cc4bae880213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calcium imaging</topic><topic>Calcium ions</topic><topic>Calcium permeability</topic><topic>Cell membranes</topic><topic>Cellular structure</topic><topic>Cysteine</topic><topic>Depolarization</topic><topic>Evolutionary genetics</topic><topic>Excitability</topic><topic>Gametocytes</topic><topic>In vivo methods and tests</topic><topic>Ions</topic><topic>Membrane permeability</topic><topic>Molecular dynamics</topic><topic>Muscles</topic><topic>Mutants</topic><topic>Oocytes</topic><topic>Permeability</topic><topic>Phenotypes</topic><topic>Potassium</topic><topic>Potassium channels</topic><topic>Residues</topic><topic>Selectivity</topic><topic>Sensory neurons</topic><topic>Sodium</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrini, Olga</creatorcontrib><creatorcontrib>Ben Soussia, Ismail</creatorcontrib><creatorcontrib>Tardy, Philippe</creatorcontrib><creatorcontrib>Walker, Denise S.</creatorcontrib><creatorcontrib>Peña-Varas, Carlos</creatorcontrib><creatorcontrib>Ramírez, David</creatorcontrib><creatorcontrib>Gendrel, Marie</creatorcontrib><creatorcontrib>Mercier, Marine</creatorcontrib><creatorcontrib>El Mouridi, Sonia</creatorcontrib><creatorcontrib>Leclercq-Blondel, Alice</creatorcontrib><creatorcontrib>González, Wendy</creatorcontrib><creatorcontrib>Schafer, William R.</creatorcontrib><creatorcontrib>Jospin, Maelle</creatorcontrib><creatorcontrib>Boulin, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrini, Olga</au><au>Ben Soussia, Ismail</au><au>Tardy, Philippe</au><au>Walker, Denise S.</au><au>Peña-Varas, Carlos</au><au>Ramírez, David</au><au>Gendrel, Marie</au><au>Mercier, Marine</au><au>El Mouridi, Sonia</au><au>Leclercq-Blondel, Alice</au><au>González, Wendy</au><au>Schafer, William R.</au><au>Jospin, Maelle</au><au>Boulin, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive sodium permeability in a Caenorhabditis elegans two-pore domain potassium channel</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2024-10-22</date><risdate>2024</risdate><volume>121</volume><issue>43</issue><spage>1</spage><pages>1-</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca 2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.2400650121</doi><orcidid>https://orcid.org/0000-0002-1734-1915</orcidid><orcidid>https://orcid.org/0000-0003-0002-1189</orcidid><orcidid>https://orcid.org/0000-0002-1694-4394</orcidid><orcidid>https://orcid.org/0000-0002-6676-8034</orcidid><orcidid>https://orcid.org/0009-0002-2179-480X</orcidid><orcidid>https://orcid.org/0000-0002-0991-0479</orcidid><orcidid>https://orcid.org/0000-0002-7535-6883</orcidid><orcidid>https://orcid.org/0000-0001-7659-4771</orcidid><orcidid>https://orcid.org/0000-0003-1534-1679</orcidid><orcidid>https://orcid.org/0000-0003-2741-8813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-10, Vol.121 (43), p.1
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_3122693547
source Alma/SFX Local Collection
subjects Calcium imaging
Calcium ions
Calcium permeability
Cell membranes
Cellular structure
Cysteine
Depolarization
Evolutionary genetics
Excitability
Gametocytes
In vivo methods and tests
Ions
Membrane permeability
Molecular dynamics
Muscles
Mutants
Oocytes
Permeability
Phenotypes
Potassium
Potassium channels
Residues
Selectivity
Sensory neurons
Sodium
Structure-function relationships
title Constitutive sodium permeability in a Caenorhabditis elegans two-pore domain potassium channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20sodium%20permeability%20in%20a%20Caenorhabditis%20elegans%20two-pore%20domain%20potassium%20channel&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Andrini,%20Olga&rft.date=2024-10-22&rft.volume=121&rft.issue=43&rft.spage=1&rft.pages=1-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2400650121&rft_dat=%3Cproquest_cross%3E3122693547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122693547&rft_id=info:pmid/&rfr_iscdi=true