Chromospheric Modeling of the Active M3V Star G 80–21 with RH1.5D

This study investigates the active regions of the M3.0V star G 80–21 using the observed data from the CARMENES project with synthetic spectra generated by the RH1.5D radiative transfer code. The CARMENES project aims to search for exoplanets around M dwarfs using high-resolution near-infrared and op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-11, Vol.975 (1), p.133
Hauptverfasser: Liu, Shuai, Wei, Huigang, Shi, Jianrong, Li, Wenxian, Han, Henggeng, Liu, Jifeng, Yang, Shangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 133
container_title The Astrophysical journal
container_volume 975
creator Liu, Shuai
Wei, Huigang
Shi, Jianrong
Li, Wenxian
Han, Henggeng
Liu, Jifeng
Yang, Shangbin
description This study investigates the active regions of the M3.0V star G 80–21 using the observed data from the CARMENES project with synthetic spectra generated by the RH1.5D radiative transfer code. The CARMENES project aims to search for exoplanets around M dwarfs using high-resolution near-infrared and optical echelle spectrographs. By comparing the observed data and models for the chromospheric lines of H α and the bluest Ca ii infrared triplet line, we obtain the best-fit models for this star. The optimal fitting for the observed spectrum of G 80–21 is achieved by employing two active areas in conjunction with an inactive region, with a calcium abundance of [Ca/H] = −0.4. This combination successfully fits all the observed data across varying ratios. The minor active component consistently comprises approximately 18% of the total (ranging from 14% to 20%), which suggests that the minor active component is likely located in the polar regions. Meanwhile, the major active component occupies a variable proportion, ranging from 51% to 82%. Our method allows for the determination of the structure and size of stellar chromospheric active regions by analyzing high-resolution observed spectra.
doi_str_mv 10.3847/1538-4357/ad7f55
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3122611886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3a2aebf2429e4fccb3112069acf0df44</doaj_id><sourcerecordid>3122611886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-1d6ffc85943a1aa643ec12960ee87aeee45331d53d63eea1a3492553879fc2853</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWt27HHBr2nnmsSxR20KL4At3w3Ryp0lpO3GSKu78B__QLzExUleuLvdyHvcchM4pGfBYREMqeRwILqOhziIr5QHq7U-HqEcIEUHIo-djdFJVq3ZlSdJDaZp7t3FVmYMvDJ67DNbFdomdxXUOeGTq4hXwnD_h-1p7PMYx-fr4ZBS_FXWO7yZ0IK9O0ZHV6wrOfmcfPd5cP6STYHY7nqajWWAaqzqgWWitiWUiuKZah4KDoSwJCUAcaQAQknOaSZ6FHKCBcJEw2WSIEmtYLHkfTTvdzOmVKn2x0f5dOV2on4PzS6V9XZg1KK6ZhoVlTUgQ1pgFp5SRMNHGkswK0WhddFqldy87qGq1cju_bd5XnDIWUhrHYYMiHcp4V1Ue7N6VEtXWrtqOVdux6mpvKJcdpXDln-a_8G9rTICh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122611886</pqid></control><display><type>article</type><title>Chromospheric Modeling of the Active M3V Star G 80–21 with RH1.5D</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Shuai ; Wei, Huigang ; Shi, Jianrong ; Li, Wenxian ; Han, Henggeng ; Liu, Jifeng ; Yang, Shangbin</creator><creatorcontrib>Liu, Shuai ; Wei, Huigang ; Shi, Jianrong ; Li, Wenxian ; Han, Henggeng ; Liu, Jifeng ; Yang, Shangbin</creatorcontrib><description>This study investigates the active regions of the M3.0V star G 80–21 using the observed data from the CARMENES project with synthetic spectra generated by the RH1.5D radiative transfer code. The CARMENES project aims to search for exoplanets around M dwarfs using high-resolution near-infrared and optical echelle spectrographs. By comparing the observed data and models for the chromospheric lines of H α and the bluest Ca ii infrared triplet line, we obtain the best-fit models for this star. The optimal fitting for the observed spectrum of G 80–21 is achieved by employing two active areas in conjunction with an inactive region, with a calcium abundance of [Ca/H] = −0.4. This combination successfully fits all the observed data across varying ratios. The minor active component consistently comprises approximately 18% of the total (ranging from 14% to 20%), which suggests that the minor active component is likely located in the polar regions. Meanwhile, the major active component occupies a variable proportion, ranging from 51% to 82%. Our method allows for the determination of the structure and size of stellar chromospheric active regions by analyzing high-resolution observed spectra.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad7f55</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Calcium ; Extrasolar planets ; H alpha line ; High resolution ; Near infrared radiation ; Polar environments ; Polar regions ; Radiative transfer ; Spectra ; Spectrographs ; Stars ; Stellar activity ; Stellar atmospheres</subject><ispartof>The Astrophysical journal, 2024-11, Vol.975 (1), p.133</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-1d6ffc85943a1aa643ec12960ee87aeee45331d53d63eea1a3492553879fc2853</cites><orcidid>0000-0002-9681-6148 ; 0000-0003-3474-5118 ; 0000-0001-5193-1727 ; 0000-0002-2874-2706 ; 0000-0002-2967-4522 ; 0000-0002-4569-1568 ; 0000-0002-0349-7839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad7f55/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Liu, Shuai</creatorcontrib><creatorcontrib>Wei, Huigang</creatorcontrib><creatorcontrib>Shi, Jianrong</creatorcontrib><creatorcontrib>Li, Wenxian</creatorcontrib><creatorcontrib>Han, Henggeng</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Yang, Shangbin</creatorcontrib><title>Chromospheric Modeling of the Active M3V Star G 80–21 with RH1.5D</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>This study investigates the active regions of the M3.0V star G 80–21 using the observed data from the CARMENES project with synthetic spectra generated by the RH1.5D radiative transfer code. The CARMENES project aims to search for exoplanets around M dwarfs using high-resolution near-infrared and optical echelle spectrographs. By comparing the observed data and models for the chromospheric lines of H α and the bluest Ca ii infrared triplet line, we obtain the best-fit models for this star. The optimal fitting for the observed spectrum of G 80–21 is achieved by employing two active areas in conjunction with an inactive region, with a calcium abundance of [Ca/H] = −0.4. This combination successfully fits all the observed data across varying ratios. The minor active component consistently comprises approximately 18% of the total (ranging from 14% to 20%), which suggests that the minor active component is likely located in the polar regions. Meanwhile, the major active component occupies a variable proportion, ranging from 51% to 82%. Our method allows for the determination of the structure and size of stellar chromospheric active regions by analyzing high-resolution observed spectra.</description><subject>Calcium</subject><subject>Extrasolar planets</subject><subject>H alpha line</subject><subject>High resolution</subject><subject>Near infrared radiation</subject><subject>Polar environments</subject><subject>Polar regions</subject><subject>Radiative transfer</subject><subject>Spectra</subject><subject>Spectrographs</subject><subject>Stars</subject><subject>Stellar activity</subject><subject>Stellar atmospheres</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UMtKw0AUHUTBWt27HHBr2nnmsSxR20KL4At3w3Ryp0lpO3GSKu78B__QLzExUleuLvdyHvcchM4pGfBYREMqeRwILqOhziIr5QHq7U-HqEcIEUHIo-djdFJVq3ZlSdJDaZp7t3FVmYMvDJ67DNbFdomdxXUOeGTq4hXwnD_h-1p7PMYx-fr4ZBS_FXWO7yZ0IK9O0ZHV6wrOfmcfPd5cP6STYHY7nqajWWAaqzqgWWitiWUiuKZah4KDoSwJCUAcaQAQknOaSZ6FHKCBcJEw2WSIEmtYLHkfTTvdzOmVKn2x0f5dOV2on4PzS6V9XZg1KK6ZhoVlTUgQ1pgFp5SRMNHGkswK0WhddFqldy87qGq1cju_bd5XnDIWUhrHYYMiHcp4V1Ue7N6VEtXWrtqOVdux6mpvKJcdpXDln-a_8G9rTICh</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Liu, Shuai</creator><creator>Wei, Huigang</creator><creator>Shi, Jianrong</creator><creator>Li, Wenxian</creator><creator>Han, Henggeng</creator><creator>Liu, Jifeng</creator><creator>Yang, Shangbin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9681-6148</orcidid><orcidid>https://orcid.org/0000-0003-3474-5118</orcidid><orcidid>https://orcid.org/0000-0001-5193-1727</orcidid><orcidid>https://orcid.org/0000-0002-2874-2706</orcidid><orcidid>https://orcid.org/0000-0002-2967-4522</orcidid><orcidid>https://orcid.org/0000-0002-4569-1568</orcidid><orcidid>https://orcid.org/0000-0002-0349-7839</orcidid></search><sort><creationdate>20241101</creationdate><title>Chromospheric Modeling of the Active M3V Star G 80–21 with RH1.5D</title><author>Liu, Shuai ; Wei, Huigang ; Shi, Jianrong ; Li, Wenxian ; Han, Henggeng ; Liu, Jifeng ; Yang, Shangbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-1d6ffc85943a1aa643ec12960ee87aeee45331d53d63eea1a3492553879fc2853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calcium</topic><topic>Extrasolar planets</topic><topic>H alpha line</topic><topic>High resolution</topic><topic>Near infrared radiation</topic><topic>Polar environments</topic><topic>Polar regions</topic><topic>Radiative transfer</topic><topic>Spectra</topic><topic>Spectrographs</topic><topic>Stars</topic><topic>Stellar activity</topic><topic>Stellar atmospheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shuai</creatorcontrib><creatorcontrib>Wei, Huigang</creatorcontrib><creatorcontrib>Shi, Jianrong</creatorcontrib><creatorcontrib>Li, Wenxian</creatorcontrib><creatorcontrib>Han, Henggeng</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Yang, Shangbin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shuai</au><au>Wei, Huigang</au><au>Shi, Jianrong</au><au>Li, Wenxian</au><au>Han, Henggeng</au><au>Liu, Jifeng</au><au>Yang, Shangbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromospheric Modeling of the Active M3V Star G 80–21 with RH1.5D</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>975</volume><issue>1</issue><spage>133</spage><pages>133-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>This study investigates the active regions of the M3.0V star G 80–21 using the observed data from the CARMENES project with synthetic spectra generated by the RH1.5D radiative transfer code. The CARMENES project aims to search for exoplanets around M dwarfs using high-resolution near-infrared and optical echelle spectrographs. By comparing the observed data and models for the chromospheric lines of H α and the bluest Ca ii infrared triplet line, we obtain the best-fit models for this star. The optimal fitting for the observed spectrum of G 80–21 is achieved by employing two active areas in conjunction with an inactive region, with a calcium abundance of [Ca/H] = −0.4. This combination successfully fits all the observed data across varying ratios. The minor active component consistently comprises approximately 18% of the total (ranging from 14% to 20%), which suggests that the minor active component is likely located in the polar regions. Meanwhile, the major active component occupies a variable proportion, ranging from 51% to 82%. Our method allows for the determination of the structure and size of stellar chromospheric active regions by analyzing high-resolution observed spectra.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad7f55</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9681-6148</orcidid><orcidid>https://orcid.org/0000-0003-3474-5118</orcidid><orcidid>https://orcid.org/0000-0001-5193-1727</orcidid><orcidid>https://orcid.org/0000-0002-2874-2706</orcidid><orcidid>https://orcid.org/0000-0002-2967-4522</orcidid><orcidid>https://orcid.org/0000-0002-4569-1568</orcidid><orcidid>https://orcid.org/0000-0002-0349-7839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-11, Vol.975 (1), p.133
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_3122611886
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Calcium
Extrasolar planets
H alpha line
High resolution
Near infrared radiation
Polar environments
Polar regions
Radiative transfer
Spectra
Spectrographs
Stars
Stellar activity
Stellar atmospheres
title Chromospheric Modeling of the Active M3V Star G 80–21 with RH1.5D
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromospheric%20Modeling%20of%20the%20Active%20M3V%20Star%20G%2080%E2%80%9321%20with%20RH1.5D&rft.jtitle=The%20Astrophysical%20journal&rft.au=Liu,%20Shuai&rft.date=2024-11-01&rft.volume=975&rft.issue=1&rft.spage=133&rft.pages=133-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad7f55&rft_dat=%3Cproquest_doaj_%3E3122611886%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122611886&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3a2aebf2429e4fccb3112069acf0df44&rfr_iscdi=true