Model-Driven Channel Estimation for MIMO Monostatic Backscatter System With Deep Unfolding

Monostatic backscatter has garnered significant interest due to its distinct benefits in low-cost passive sensing. Observing and sensing with backscatter necessitates determining the phase and amplitude of the backscatter channel to identify the state of the target of interest. In the detection of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Communications Society 2024, Vol.5, p.6697-6712
Hauptverfasser: Zhou, Yulin, Li, Xiaoting, Zhang, Xianmin, Hui, Xiaonan, Chen, Yunfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6712
container_issue
container_start_page 6697
container_title IEEE open journal of the Communications Society
container_volume 5
creator Zhou, Yulin
Li, Xiaoting
Zhang, Xianmin
Hui, Xiaonan
Chen, Yunfei
description Monostatic backscatter has garnered significant interest due to its distinct benefits in low-cost passive sensing. Observing and sensing with backscatter necessitates determining the phase and amplitude of the backscatter channel to identify the state of the target of interest. In the detection of multiple targets, colliding signals can distort the backscatter channel, complicating channel state recovery. It becomes even more challenging when multiple backscattering devices (BDs) are used. This paper proposes a novel channel estimation scheme to tackle the challenge, which is applied to a monostatic backscatter communication system with multiple reader antennas (RAs) and backscatter devices. Specifically, we propose a backscatter communication model and subsequently develop a de-interfering channel estimation framework that considers the ambient interference in the channel, named model-driven unfolded channel estimation (MUCE). To validate the effectiveness and advantages of the MUCE method, it is compared with the least square (LS) algorithm and convolutional neural network (CNN). The results prove that MUCE requires lower computational costs for the same channel estimation performance and achieves an optimal balance between estimation performance and computational expense.
doi_str_mv 10.1109/OJCOMS.2024.3479234
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3122296083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10715725</ieee_id><doaj_id>oai_doaj_org_article_f56838aa5a6444ca8926c1e06ab14b0a</doaj_id><sourcerecordid>3122296083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-75df37ff451ccf1d3b3e22dd8b146c8bfdf4baea8c248299c6ce905601d02f453</originalsourceid><addsrcrecordid>eNpNUUtLxDAQLqKg6P4CPQQ8d82zj6OurxXLHlQULyFNJtq1NmuSFfz3RiuypxmG78V8WXZI8JQQXJ8sbmaL5m5KMeVTxsuaMr6V7dGC85xQ8bS9se9mkxCWGGMqCCGM72XPjTPQ5-e--4QBzV7VMECPLkLs3lXs3ICs86iZNwvUuMGFmI4anSn9FrSKETy6-woR3tFjF1_ROcAKPQzW9aYbXg6yHav6AJO_uZ89XF7cz67z28XVfHZ6m2vKecxLYSwrreWCaG2JYS0DSo2pWsILXbXWWN4qUFWCV7SudaGhxqLAxGCaWGw_m4-6xqmlXPmU3H9Jpzr5e3D-RSqfYvcgrSgqViklVPoI16qqaaEJ4EIlsxarpHU8aq28-1hDiHLp1n5I8SUjlNK6wBVLKDaitHcheLD_rgTLn07k2In86UT-dZJYRyOrA4ANRklESQX7BlCwiCE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122296083</pqid></control><display><type>article</type><title>Model-Driven Channel Estimation for MIMO Monostatic Backscatter System With Deep Unfolding</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Yulin ; Li, Xiaoting ; Zhang, Xianmin ; Hui, Xiaonan ; Chen, Yunfei</creator><creatorcontrib>Zhou, Yulin ; Li, Xiaoting ; Zhang, Xianmin ; Hui, Xiaonan ; Chen, Yunfei</creatorcontrib><description>Monostatic backscatter has garnered significant interest due to its distinct benefits in low-cost passive sensing. Observing and sensing with backscatter necessitates determining the phase and amplitude of the backscatter channel to identify the state of the target of interest. In the detection of multiple targets, colliding signals can distort the backscatter channel, complicating channel state recovery. It becomes even more challenging when multiple backscattering devices (BDs) are used. This paper proposes a novel channel estimation scheme to tackle the challenge, which is applied to a monostatic backscatter communication system with multiple reader antennas (RAs) and backscatter devices. Specifically, we propose a backscatter communication model and subsequently develop a de-interfering channel estimation framework that considers the ambient interference in the channel, named model-driven unfolded channel estimation (MUCE). To validate the effectiveness and advantages of the MUCE method, it is compared with the least square (LS) algorithm and convolutional neural network (CNN). The results prove that MUCE requires lower computational costs for the same channel estimation performance and achieves an optimal balance between estimation performance and computational expense.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2024.3479234</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Backscatter ; Backscattering ; Channel estimation ; Communications systems ; Computational modeling ; Computing costs ; Deep learning ; deep unfolding ; Detectors ; Estimation ; interference cancellation ; Iterative methods ; monostatic backscatter ; Receivers ; Sensors ; Target detection ; Target recognition ; Training</subject><ispartof>IEEE open journal of the Communications Society, 2024, Vol.5, p.6697-6712</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-75df37ff451ccf1d3b3e22dd8b146c8bfdf4baea8c248299c6ce905601d02f453</cites><orcidid>0000-0001-8083-1805 ; 0000-0002-9374-8186 ; 0000-0002-0660-0213 ; 0000-0002-3378-5225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10715725$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27622,27912,27913,27914,54922</link.rule.ids></links><search><creatorcontrib>Zhou, Yulin</creatorcontrib><creatorcontrib>Li, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Xianmin</creatorcontrib><creatorcontrib>Hui, Xiaonan</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><title>Model-Driven Channel Estimation for MIMO Monostatic Backscatter System With Deep Unfolding</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>Monostatic backscatter has garnered significant interest due to its distinct benefits in low-cost passive sensing. Observing and sensing with backscatter necessitates determining the phase and amplitude of the backscatter channel to identify the state of the target of interest. In the detection of multiple targets, colliding signals can distort the backscatter channel, complicating channel state recovery. It becomes even more challenging when multiple backscattering devices (BDs) are used. This paper proposes a novel channel estimation scheme to tackle the challenge, which is applied to a monostatic backscatter communication system with multiple reader antennas (RAs) and backscatter devices. Specifically, we propose a backscatter communication model and subsequently develop a de-interfering channel estimation framework that considers the ambient interference in the channel, named model-driven unfolded channel estimation (MUCE). To validate the effectiveness and advantages of the MUCE method, it is compared with the least square (LS) algorithm and convolutional neural network (CNN). The results prove that MUCE requires lower computational costs for the same channel estimation performance and achieves an optimal balance between estimation performance and computational expense.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Channel estimation</subject><subject>Communications systems</subject><subject>Computational modeling</subject><subject>Computing costs</subject><subject>Deep learning</subject><subject>deep unfolding</subject><subject>Detectors</subject><subject>Estimation</subject><subject>interference cancellation</subject><subject>Iterative methods</subject><subject>monostatic backscatter</subject><subject>Receivers</subject><subject>Sensors</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>Training</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLxDAQLqKg6P4CPQQ8d82zj6OurxXLHlQULyFNJtq1NmuSFfz3RiuypxmG78V8WXZI8JQQXJ8sbmaL5m5KMeVTxsuaMr6V7dGC85xQ8bS9se9mkxCWGGMqCCGM72XPjTPQ5-e--4QBzV7VMECPLkLs3lXs3ICs86iZNwvUuMGFmI4anSn9FrSKETy6-woR3tFjF1_ROcAKPQzW9aYbXg6yHav6AJO_uZ89XF7cz67z28XVfHZ6m2vKecxLYSwrreWCaG2JYS0DSo2pWsILXbXWWN4qUFWCV7SudaGhxqLAxGCaWGw_m4-6xqmlXPmU3H9Jpzr5e3D-RSqfYvcgrSgqViklVPoI16qqaaEJ4EIlsxarpHU8aq28-1hDiHLp1n5I8SUjlNK6wBVLKDaitHcheLD_rgTLn07k2In86UT-dZJYRyOrA4ANRklESQX7BlCwiCE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Yulin</creator><creator>Li, Xiaoting</creator><creator>Zhang, Xianmin</creator><creator>Hui, Xiaonan</creator><creator>Chen, Yunfei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid><orcidid>https://orcid.org/0000-0002-9374-8186</orcidid><orcidid>https://orcid.org/0000-0002-0660-0213</orcidid><orcidid>https://orcid.org/0000-0002-3378-5225</orcidid></search><sort><creationdate>2024</creationdate><title>Model-Driven Channel Estimation for MIMO Monostatic Backscatter System With Deep Unfolding</title><author>Zhou, Yulin ; Li, Xiaoting ; Zhang, Xianmin ; Hui, Xiaonan ; Chen, Yunfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-75df37ff451ccf1d3b3e22dd8b146c8bfdf4baea8c248299c6ce905601d02f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Channel estimation</topic><topic>Communications systems</topic><topic>Computational modeling</topic><topic>Computing costs</topic><topic>Deep learning</topic><topic>deep unfolding</topic><topic>Detectors</topic><topic>Estimation</topic><topic>interference cancellation</topic><topic>Iterative methods</topic><topic>monostatic backscatter</topic><topic>Receivers</topic><topic>Sensors</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yulin</creatorcontrib><creatorcontrib>Li, Xiaoting</creatorcontrib><creatorcontrib>Zhang, Xianmin</creatorcontrib><creatorcontrib>Hui, Xiaonan</creatorcontrib><creatorcontrib>Chen, Yunfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yulin</au><au>Li, Xiaoting</au><au>Zhang, Xianmin</au><au>Hui, Xiaonan</au><au>Chen, Yunfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Driven Channel Estimation for MIMO Monostatic Backscatter System With Deep Unfolding</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>6697</spage><epage>6712</epage><pages>6697-6712</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>Monostatic backscatter has garnered significant interest due to its distinct benefits in low-cost passive sensing. Observing and sensing with backscatter necessitates determining the phase and amplitude of the backscatter channel to identify the state of the target of interest. In the detection of multiple targets, colliding signals can distort the backscatter channel, complicating channel state recovery. It becomes even more challenging when multiple backscattering devices (BDs) are used. This paper proposes a novel channel estimation scheme to tackle the challenge, which is applied to a monostatic backscatter communication system with multiple reader antennas (RAs) and backscatter devices. Specifically, we propose a backscatter communication model and subsequently develop a de-interfering channel estimation framework that considers the ambient interference in the channel, named model-driven unfolded channel estimation (MUCE). To validate the effectiveness and advantages of the MUCE method, it is compared with the least square (LS) algorithm and convolutional neural network (CNN). The results prove that MUCE requires lower computational costs for the same channel estimation performance and achieves an optimal balance between estimation performance and computational expense.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCOMS.2024.3479234</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8083-1805</orcidid><orcidid>https://orcid.org/0000-0002-9374-8186</orcidid><orcidid>https://orcid.org/0000-0002-0660-0213</orcidid><orcidid>https://orcid.org/0000-0002-3378-5225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-125X
ispartof IEEE open journal of the Communications Society, 2024, Vol.5, p.6697-6712
issn 2644-125X
2644-125X
language eng
recordid cdi_proquest_journals_3122296083
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial neural networks
Backscatter
Backscattering
Channel estimation
Communications systems
Computational modeling
Computing costs
Deep learning
deep unfolding
Detectors
Estimation
interference cancellation
Iterative methods
monostatic backscatter
Receivers
Sensors
Target detection
Target recognition
Training
title Model-Driven Channel Estimation for MIMO Monostatic Backscatter System With Deep Unfolding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Driven%20Channel%20Estimation%20for%20MIMO%20Monostatic%20Backscatter%20System%20With%20Deep%20Unfolding&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Zhou,%20Yulin&rft.date=2024&rft.volume=5&rft.spage=6697&rft.epage=6712&rft.pages=6697-6712&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2024.3479234&rft_dat=%3Cproquest_ieee_%3E3122296083%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122296083&rft_id=info:pmid/&rft_ieee_id=10715725&rft_doaj_id=oai_doaj_org_article_f56838aa5a6444ca8926c1e06ab14b0a&rfr_iscdi=true