WTGCN: wavelet transform graph convolution network for pedestrian trajectory prediction

The task of pedestrian trajectory prediction remains challenging due to variable scenarios, complex social interactions, and uncertainty in pedestrian motion. Previous trajectory prediction research only models from the time domain, which makes it difficult to accurately capture the global and detai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2024-12, Vol.15 (12), p.5531-5548
Hauptverfasser: Chen, Wangxing, Sang, Haifeng, Wang, Jinyu, Zhao, Zishan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5548
container_issue 12
container_start_page 5531
container_title International journal of machine learning and cybernetics
container_volume 15
creator Chen, Wangxing
Sang, Haifeng
Wang, Jinyu
Zhao, Zishan
description The task of pedestrian trajectory prediction remains challenging due to variable scenarios, complex social interactions, and uncertainty in pedestrian motion. Previous trajectory prediction research only models from the time domain, which makes it difficult to accurately capture the global and detailed features of complex pedestrian social interactions and the uncertainty of pedestrian movement. These methods also ignore the relationship between scene features and the potential motion patterns of pedestrians. Therefore, we propose a wavelet transform graph convolution network to obtain accurate pedestrian potential motion patterns through time-frequency analysis. We first construct spatial and temporal graphs, then obtain the attention score matrices through the self-attention mechanism in the time domain and combine them with the scene features. Then, we utilize the two-dimensional discrete wavelet transform to generate low-frequency and high-frequency components for representing global and detailed features of spatial-temporal interactions. These components are then further processed using asymmetric convolution, and the wavelet transform adjacency matrix is obtained through the inverse wavelet transform. We then employ graph convolution to combine the graph and the adjacency matrix to obtain spatial and temporal interaction features. Finally, we design the wavelet transform temporal convolution network to directly predict the two-dimensional Gaussian distribution parameters of the future trajectory. Extensive experiments on the ETH, UCY, and SDD datasets demonstrate that our method outperforms the state-of-the-art methods in prediction performance.
doi_str_mv 10.1007/s13042-024-02258-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121863367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121863367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-2b0c247745163b134e9a02bfade987b07ee91ea98f645eb8a67191ed710bc4223</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITGN_gFMkzgUnaZuUG5pgIE1wGRq3KG3d0bE1JWk37d-TUQQ3LFm27Pf88Qi5ZHDNAOSNZwJiHgGPg_NERckJGTGVqkiBejv9zSU7JxPv1xAsBSGAj8hyuZhNn2_p3uxwgx3tnGl8Zd2Wrpxp32lhm53d9F1tG9pgt7fug4Y2bbFE37naNEfKGovOugNtHZZ1cQRfkLPKbDxOfuKYvD7cL6aP0fxl9jS9m0cFB-ginkPBYynjhKUiZyLGzADPK1NipmQOEjFjaDJVpXGCuTKpZKFQSgZ5EXMuxuRqmNs6-9mHk_Ta9q4JK7VgPDwuRCoDig-owlnvHVa6dfXWuINmoI8a6kFDHTTU3xrqJJDEQPIB3KzQ_Y3-h_UFobp04Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121863367</pqid></control><display><type>article</type><title>WTGCN: wavelet transform graph convolution network for pedestrian trajectory prediction</title><source>SpringerLink Journals</source><creator>Chen, Wangxing ; Sang, Haifeng ; Wang, Jinyu ; Zhao, Zishan</creator><creatorcontrib>Chen, Wangxing ; Sang, Haifeng ; Wang, Jinyu ; Zhao, Zishan</creatorcontrib><description>The task of pedestrian trajectory prediction remains challenging due to variable scenarios, complex social interactions, and uncertainty in pedestrian motion. Previous trajectory prediction research only models from the time domain, which makes it difficult to accurately capture the global and detailed features of complex pedestrian social interactions and the uncertainty of pedestrian movement. These methods also ignore the relationship between scene features and the potential motion patterns of pedestrians. Therefore, we propose a wavelet transform graph convolution network to obtain accurate pedestrian potential motion patterns through time-frequency analysis. We first construct spatial and temporal graphs, then obtain the attention score matrices through the self-attention mechanism in the time domain and combine them with the scene features. Then, we utilize the two-dimensional discrete wavelet transform to generate low-frequency and high-frequency components for representing global and detailed features of spatial-temporal interactions. These components are then further processed using asymmetric convolution, and the wavelet transform adjacency matrix is obtained through the inverse wavelet transform. We then employ graph convolution to combine the graph and the adjacency matrix to obtain spatial and temporal interaction features. Finally, we design the wavelet transform temporal convolution network to directly predict the two-dimensional Gaussian distribution parameters of the future trajectory. Extensive experiments on the ETH, UCY, and SDD datasets demonstrate that our method outperforms the state-of-the-art methods in prediction performance.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-024-02258-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Convolution ; Data mining ; Discrete Wavelet Transform ; Engineering ; Graphical representations ; Graphs ; Mechatronics ; Movement ; Normal distribution ; Original Article ; Pattern Recognition ; Pedestrians ; Robotics ; Social interaction ; Systems Biology ; Time domain analysis ; Time-frequency analysis ; Trajectories ; Trends ; Two dimensional analysis ; Uncertainty ; Wavelet analysis ; Wavelet transforms</subject><ispartof>International journal of machine learning and cybernetics, 2024-12, Vol.15 (12), p.5531-5548</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-2b0c247745163b134e9a02bfade987b07ee91ea98f645eb8a67191ed710bc4223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-024-02258-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13042-024-02258-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Chen, Wangxing</creatorcontrib><creatorcontrib>Sang, Haifeng</creatorcontrib><creatorcontrib>Wang, Jinyu</creatorcontrib><creatorcontrib>Zhao, Zishan</creatorcontrib><title>WTGCN: wavelet transform graph convolution network for pedestrian trajectory prediction</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>The task of pedestrian trajectory prediction remains challenging due to variable scenarios, complex social interactions, and uncertainty in pedestrian motion. Previous trajectory prediction research only models from the time domain, which makes it difficult to accurately capture the global and detailed features of complex pedestrian social interactions and the uncertainty of pedestrian movement. These methods also ignore the relationship between scene features and the potential motion patterns of pedestrians. Therefore, we propose a wavelet transform graph convolution network to obtain accurate pedestrian potential motion patterns through time-frequency analysis. We first construct spatial and temporal graphs, then obtain the attention score matrices through the self-attention mechanism in the time domain and combine them with the scene features. Then, we utilize the two-dimensional discrete wavelet transform to generate low-frequency and high-frequency components for representing global and detailed features of spatial-temporal interactions. These components are then further processed using asymmetric convolution, and the wavelet transform adjacency matrix is obtained through the inverse wavelet transform. We then employ graph convolution to combine the graph and the adjacency matrix to obtain spatial and temporal interaction features. Finally, we design the wavelet transform temporal convolution network to directly predict the two-dimensional Gaussian distribution parameters of the future trajectory. Extensive experiments on the ETH, UCY, and SDD datasets demonstrate that our method outperforms the state-of-the-art methods in prediction performance.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Convolution</subject><subject>Data mining</subject><subject>Discrete Wavelet Transform</subject><subject>Engineering</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Mechatronics</subject><subject>Movement</subject><subject>Normal distribution</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Pedestrians</subject><subject>Robotics</subject><subject>Social interaction</subject><subject>Systems Biology</subject><subject>Time domain analysis</subject><subject>Time-frequency analysis</subject><subject>Trajectories</subject><subject>Trends</subject><subject>Two dimensional analysis</subject><subject>Uncertainty</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITGN_gFMkzgUnaZuUG5pgIE1wGRq3KG3d0bE1JWk37d-TUQQ3LFm27Pf88Qi5ZHDNAOSNZwJiHgGPg_NERckJGTGVqkiBejv9zSU7JxPv1xAsBSGAj8hyuZhNn2_p3uxwgx3tnGl8Zd2Wrpxp32lhm53d9F1tG9pgt7fug4Y2bbFE37naNEfKGovOugNtHZZ1cQRfkLPKbDxOfuKYvD7cL6aP0fxl9jS9m0cFB-ginkPBYynjhKUiZyLGzADPK1NipmQOEjFjaDJVpXGCuTKpZKFQSgZ5EXMuxuRqmNs6-9mHk_Ta9q4JK7VgPDwuRCoDig-owlnvHVa6dfXWuINmoI8a6kFDHTTU3xrqJJDEQPIB3KzQ_Y3-h_UFobp04Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chen, Wangxing</creator><creator>Sang, Haifeng</creator><creator>Wang, Jinyu</creator><creator>Zhao, Zishan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241201</creationdate><title>WTGCN: wavelet transform graph convolution network for pedestrian trajectory prediction</title><author>Chen, Wangxing ; Sang, Haifeng ; Wang, Jinyu ; Zhao, Zishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-2b0c247745163b134e9a02bfade987b07ee91ea98f645eb8a67191ed710bc4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Convolution</topic><topic>Data mining</topic><topic>Discrete Wavelet Transform</topic><topic>Engineering</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Mechatronics</topic><topic>Movement</topic><topic>Normal distribution</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Pedestrians</topic><topic>Robotics</topic><topic>Social interaction</topic><topic>Systems Biology</topic><topic>Time domain analysis</topic><topic>Time-frequency analysis</topic><topic>Trajectories</topic><topic>Trends</topic><topic>Two dimensional analysis</topic><topic>Uncertainty</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wangxing</creatorcontrib><creatorcontrib>Sang, Haifeng</creatorcontrib><creatorcontrib>Wang, Jinyu</creatorcontrib><creatorcontrib>Zhao, Zishan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wangxing</au><au>Sang, Haifeng</au><au>Wang, Jinyu</au><au>Zhao, Zishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WTGCN: wavelet transform graph convolution network for pedestrian trajectory prediction</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>15</volume><issue>12</issue><spage>5531</spage><epage>5548</epage><pages>5531-5548</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>The task of pedestrian trajectory prediction remains challenging due to variable scenarios, complex social interactions, and uncertainty in pedestrian motion. Previous trajectory prediction research only models from the time domain, which makes it difficult to accurately capture the global and detailed features of complex pedestrian social interactions and the uncertainty of pedestrian movement. These methods also ignore the relationship between scene features and the potential motion patterns of pedestrians. Therefore, we propose a wavelet transform graph convolution network to obtain accurate pedestrian potential motion patterns through time-frequency analysis. We first construct spatial and temporal graphs, then obtain the attention score matrices through the self-attention mechanism in the time domain and combine them with the scene features. Then, we utilize the two-dimensional discrete wavelet transform to generate low-frequency and high-frequency components for representing global and detailed features of spatial-temporal interactions. These components are then further processed using asymmetric convolution, and the wavelet transform adjacency matrix is obtained through the inverse wavelet transform. We then employ graph convolution to combine the graph and the adjacency matrix to obtain spatial and temporal interaction features. Finally, we design the wavelet transform temporal convolution network to directly predict the two-dimensional Gaussian distribution parameters of the future trajectory. Extensive experiments on the ETH, UCY, and SDD datasets demonstrate that our method outperforms the state-of-the-art methods in prediction performance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-024-02258-5</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2024-12, Vol.15 (12), p.5531-5548
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_3121863367
source SpringerLink Journals
subjects Accuracy
Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Convolution
Data mining
Discrete Wavelet Transform
Engineering
Graphical representations
Graphs
Mechatronics
Movement
Normal distribution
Original Article
Pattern Recognition
Pedestrians
Robotics
Social interaction
Systems Biology
Time domain analysis
Time-frequency analysis
Trajectories
Trends
Two dimensional analysis
Uncertainty
Wavelet analysis
Wavelet transforms
title WTGCN: wavelet transform graph convolution network for pedestrian trajectory prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WTGCN:%20wavelet%20transform%20graph%20convolution%20network%20for%20pedestrian%20trajectory%20prediction&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Chen,%20Wangxing&rft.date=2024-12-01&rft.volume=15&rft.issue=12&rft.spage=5531&rft.epage=5548&rft.pages=5531-5548&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-024-02258-5&rft_dat=%3Cproquest_cross%3E3121863367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121863367&rft_id=info:pmid/&rfr_iscdi=true