One-step graph-based multi-view clustering via specific and unified nonnegative embeddings
Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clusteri...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2024-12, Vol.15 (12), p.5807-5822 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5822 |
---|---|
container_issue | 12 |
container_start_page | 5807 |
container_title | International journal of machine learning and cybernetics |
container_volume | 15 |
creator | El Hajjar, Sally Abdallah, Fahed Omrani, Hichem Chaaban, Alain Khaled Arif, Muhammad Alturki, Ryan AlGhamdi, Mohammed J. |
description | Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results. |
doi_str_mv | 10.1007/s13042-024-02280-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121862680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121862680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-35481f965e6fc27bc177e3a102cb1ad1ca521981d15f65ee109d44a267dd22fb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA5-gk2d2kRyl-QcGLgngJ2WS2prS7a7Jb8d-bWtGbgZCBPO8M8xByzuGSA6irxCUUgoEo8hUamDoiE64rzTTol-PfWvFTMktpDflUICWICXl9bJGlAXu6irZ_Y7VN6Ol23AyB7QJ-ULcZ83cM7YrugqWpRxea4KhtPR3bXGa87doWV3YIO6S4rdH7jKczctLYTcLZzzslz7c3T4t7tny8e1hcL5kTAAOTZaF5M69KrBonVO24UigtB-Fqbj13thR8rrnnZZMh5DD3RWFFpbwXoqnllFwc-vaxex8xDWbdjbHNI43kIu8uKg2ZEgfKxS6liI3pY9ja-Gk4mL1Gc9BoskbzrdGoHJKHUOr3BjD-tf4n9QXGq3WJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121862680</pqid></control><display><type>article</type><title>One-step graph-based multi-view clustering via specific and unified nonnegative embeddings</title><source>SpringerNature Journals</source><creator>El Hajjar, Sally ; Abdallah, Fahed ; Omrani, Hichem ; Chaaban, Alain Khaled ; Arif, Muhammad ; Alturki, Ryan ; AlGhamdi, Mohammed J.</creator><creatorcontrib>El Hajjar, Sally ; Abdallah, Fahed ; Omrani, Hichem ; Chaaban, Alain Khaled ; Arif, Muhammad ; Alturki, Ryan ; AlGhamdi, Mohammed J.</creatorcontrib><description>Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-024-02280-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Complex Systems ; Computational Intelligence ; Control ; Data science ; Datasets ; Eigenvectors ; Embedding ; Engineering ; Information sources ; Machine learning ; Mechatronics ; Methods ; Original Article ; Pattern Recognition ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2024-12, Vol.15 (12), p.5807-5822</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-35481f965e6fc27bc177e3a102cb1ad1ca521981d15f65ee109d44a267dd22fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-024-02280-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13042-024-02280-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>El Hajjar, Sally</creatorcontrib><creatorcontrib>Abdallah, Fahed</creatorcontrib><creatorcontrib>Omrani, Hichem</creatorcontrib><creatorcontrib>Chaaban, Alain Khaled</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Alturki, Ryan</creatorcontrib><creatorcontrib>AlGhamdi, Mohammed J.</creatorcontrib><title>One-step graph-based multi-view clustering via specific and unified nonnegative embeddings</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data science</subject><subject>Datasets</subject><subject>Eigenvectors</subject><subject>Embedding</subject><subject>Engineering</subject><subject>Information sources</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeA5-gk2d2kRyl-QcGLgngJ2WS2prS7a7Jb8d-bWtGbgZCBPO8M8xByzuGSA6irxCUUgoEo8hUamDoiE64rzTTol-PfWvFTMktpDflUICWICXl9bJGlAXu6irZ_Y7VN6Ol23AyB7QJ-ULcZ83cM7YrugqWpRxea4KhtPR3bXGa87doWV3YIO6S4rdH7jKczctLYTcLZzzslz7c3T4t7tny8e1hcL5kTAAOTZaF5M69KrBonVO24UigtB-Fqbj13thR8rrnnZZMh5DD3RWFFpbwXoqnllFwc-vaxex8xDWbdjbHNI43kIu8uKg2ZEgfKxS6liI3pY9ja-Gk4mL1Gc9BoskbzrdGoHJKHUOr3BjD-tf4n9QXGq3WJ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>El Hajjar, Sally</creator><creator>Abdallah, Fahed</creator><creator>Omrani, Hichem</creator><creator>Chaaban, Alain Khaled</creator><creator>Arif, Muhammad</creator><creator>Alturki, Ryan</creator><creator>AlGhamdi, Mohammed J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241201</creationdate><title>One-step graph-based multi-view clustering via specific and unified nonnegative embeddings</title><author>El Hajjar, Sally ; Abdallah, Fahed ; Omrani, Hichem ; Chaaban, Alain Khaled ; Arif, Muhammad ; Alturki, Ryan ; AlGhamdi, Mohammed J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-35481f965e6fc27bc177e3a102cb1ad1ca521981d15f65ee109d44a267dd22fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data science</topic><topic>Datasets</topic><topic>Eigenvectors</topic><topic>Embedding</topic><topic>Engineering</topic><topic>Information sources</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hajjar, Sally</creatorcontrib><creatorcontrib>Abdallah, Fahed</creatorcontrib><creatorcontrib>Omrani, Hichem</creatorcontrib><creatorcontrib>Chaaban, Alain Khaled</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Alturki, Ryan</creatorcontrib><creatorcontrib>AlGhamdi, Mohammed J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hajjar, Sally</au><au>Abdallah, Fahed</au><au>Omrani, Hichem</au><au>Chaaban, Alain Khaled</au><au>Arif, Muhammad</au><au>Alturki, Ryan</au><au>AlGhamdi, Mohammed J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step graph-based multi-view clustering via specific and unified nonnegative embeddings</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>15</volume><issue>12</issue><spage>5807</spage><epage>5822</epage><pages>5807-5822</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-024-02280-7</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2024-12, Vol.15 (12), p.5807-5822 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_3121862680 |
source | SpringerNature Journals |
subjects | Algorithms Artificial Intelligence Clustering Complex Systems Computational Intelligence Control Data science Datasets Eigenvectors Embedding Engineering Information sources Machine learning Mechatronics Methods Original Article Pattern Recognition Robotics Systems Biology |
title | One-step graph-based multi-view clustering via specific and unified nonnegative embeddings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20graph-based%20multi-view%20clustering%20via%20specific%20and%20unified%20nonnegative%20embeddings&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=El%20Hajjar,%20Sally&rft.date=2024-12-01&rft.volume=15&rft.issue=12&rft.spage=5807&rft.epage=5822&rft.pages=5807-5822&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-024-02280-7&rft_dat=%3Cproquest_cross%3E3121862680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121862680&rft_id=info:pmid/&rfr_iscdi=true |