One-step graph-based multi-view clustering via specific and unified nonnegative embeddings

Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clusteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2024-12, Vol.15 (12), p.5807-5822
Hauptverfasser: El Hajjar, Sally, Abdallah, Fahed, Omrani, Hichem, Chaaban, Alain Khaled, Arif, Muhammad, Alturki, Ryan, AlGhamdi, Mohammed J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5822
container_issue 12
container_start_page 5807
container_title International journal of machine learning and cybernetics
container_volume 15
creator El Hajjar, Sally
Abdallah, Fahed
Omrani, Hichem
Chaaban, Alain Khaled
Arif, Muhammad
Alturki, Ryan
AlGhamdi, Mohammed J.
description Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.
doi_str_mv 10.1007/s13042-024-02280-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121862680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121862680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-35481f965e6fc27bc177e3a102cb1ad1ca521981d15f65ee109d44a267dd22fb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA5-gk2d2kRyl-QcGLgngJ2WS2prS7a7Jb8d-bWtGbgZCBPO8M8xByzuGSA6irxCUUgoEo8hUamDoiE64rzTTol-PfWvFTMktpDflUICWICXl9bJGlAXu6irZ_Y7VN6Ol23AyB7QJ-ULcZ83cM7YrugqWpRxea4KhtPR3bXGa87doWV3YIO6S4rdH7jKczctLYTcLZzzslz7c3T4t7tny8e1hcL5kTAAOTZaF5M69KrBonVO24UigtB-Fqbj13thR8rrnnZZMh5DD3RWFFpbwXoqnllFwc-vaxex8xDWbdjbHNI43kIu8uKg2ZEgfKxS6liI3pY9ja-Gk4mL1Gc9BoskbzrdGoHJKHUOr3BjD-tf4n9QXGq3WJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121862680</pqid></control><display><type>article</type><title>One-step graph-based multi-view clustering via specific and unified nonnegative embeddings</title><source>SpringerNature Journals</source><creator>El Hajjar, Sally ; Abdallah, Fahed ; Omrani, Hichem ; Chaaban, Alain Khaled ; Arif, Muhammad ; Alturki, Ryan ; AlGhamdi, Mohammed J.</creator><creatorcontrib>El Hajjar, Sally ; Abdallah, Fahed ; Omrani, Hichem ; Chaaban, Alain Khaled ; Arif, Muhammad ; Alturki, Ryan ; AlGhamdi, Mohammed J.</creatorcontrib><description>Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-024-02280-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Complex Systems ; Computational Intelligence ; Control ; Data science ; Datasets ; Eigenvectors ; Embedding ; Engineering ; Information sources ; Machine learning ; Mechatronics ; Methods ; Original Article ; Pattern Recognition ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2024-12, Vol.15 (12), p.5807-5822</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-35481f965e6fc27bc177e3a102cb1ad1ca521981d15f65ee109d44a267dd22fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-024-02280-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13042-024-02280-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>El Hajjar, Sally</creatorcontrib><creatorcontrib>Abdallah, Fahed</creatorcontrib><creatorcontrib>Omrani, Hichem</creatorcontrib><creatorcontrib>Chaaban, Alain Khaled</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Alturki, Ryan</creatorcontrib><creatorcontrib>AlGhamdi, Mohammed J.</creatorcontrib><title>One-step graph-based multi-view clustering via specific and unified nonnegative embeddings</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data science</subject><subject>Datasets</subject><subject>Eigenvectors</subject><subject>Embedding</subject><subject>Engineering</subject><subject>Information sources</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeA5-gk2d2kRyl-QcGLgngJ2WS2prS7a7Jb8d-bWtGbgZCBPO8M8xByzuGSA6irxCUUgoEo8hUamDoiE64rzTTol-PfWvFTMktpDflUICWICXl9bJGlAXu6irZ_Y7VN6Ol23AyB7QJ-ULcZ83cM7YrugqWpRxea4KhtPR3bXGa87doWV3YIO6S4rdH7jKczctLYTcLZzzslz7c3T4t7tny8e1hcL5kTAAOTZaF5M69KrBonVO24UigtB-Fqbj13thR8rrnnZZMh5DD3RWFFpbwXoqnllFwc-vaxex8xDWbdjbHNI43kIu8uKg2ZEgfKxS6liI3pY9ja-Gk4mL1Gc9BoskbzrdGoHJKHUOr3BjD-tf4n9QXGq3WJ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>El Hajjar, Sally</creator><creator>Abdallah, Fahed</creator><creator>Omrani, Hichem</creator><creator>Chaaban, Alain Khaled</creator><creator>Arif, Muhammad</creator><creator>Alturki, Ryan</creator><creator>AlGhamdi, Mohammed J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241201</creationdate><title>One-step graph-based multi-view clustering via specific and unified nonnegative embeddings</title><author>El Hajjar, Sally ; Abdallah, Fahed ; Omrani, Hichem ; Chaaban, Alain Khaled ; Arif, Muhammad ; Alturki, Ryan ; AlGhamdi, Mohammed J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-35481f965e6fc27bc177e3a102cb1ad1ca521981d15f65ee109d44a267dd22fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data science</topic><topic>Datasets</topic><topic>Eigenvectors</topic><topic>Embedding</topic><topic>Engineering</topic><topic>Information sources</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hajjar, Sally</creatorcontrib><creatorcontrib>Abdallah, Fahed</creatorcontrib><creatorcontrib>Omrani, Hichem</creatorcontrib><creatorcontrib>Chaaban, Alain Khaled</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Alturki, Ryan</creatorcontrib><creatorcontrib>AlGhamdi, Mohammed J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hajjar, Sally</au><au>Abdallah, Fahed</au><au>Omrani, Hichem</au><au>Chaaban, Alain Khaled</au><au>Arif, Muhammad</au><au>Alturki, Ryan</au><au>AlGhamdi, Mohammed J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step graph-based multi-view clustering via specific and unified nonnegative embeddings</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>15</volume><issue>12</issue><spage>5807</spage><epage>5822</epage><pages>5807-5822</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-024-02280-7</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2024-12, Vol.15 (12), p.5807-5822
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_3121862680
source SpringerNature Journals
subjects Algorithms
Artificial Intelligence
Clustering
Complex Systems
Computational Intelligence
Control
Data science
Datasets
Eigenvectors
Embedding
Engineering
Information sources
Machine learning
Mechatronics
Methods
Original Article
Pattern Recognition
Robotics
Systems Biology
title One-step graph-based multi-view clustering via specific and unified nonnegative embeddings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20graph-based%20multi-view%20clustering%20via%20specific%20and%20unified%20nonnegative%20embeddings&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=El%20Hajjar,%20Sally&rft.date=2024-12-01&rft.volume=15&rft.issue=12&rft.spage=5807&rft.epage=5822&rft.pages=5807-5822&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-024-02280-7&rft_dat=%3Cproquest_cross%3E3121862680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121862680&rft_id=info:pmid/&rfr_iscdi=true