A Survey of Small Language Models
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we pre...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chien Van Nguyen Shen, Xuan Aponte, Ryan Yu, Xia Basu, Samyadeep Hu, Zhengmian Chen, Jian Parmar, Mihir Kunapuli, Sasidhar Barrow, Joe Wu, Junda Singh, Ashish Wang, Yu Gu, Jiuxiang Dernoncourt, Franck Ahmed, Nesreen K Lipka, Nedim Zhang, Ruiyi Chen, Xiang Yu, Tong Kim, Sungchul Deilamsalehy, Hanieh Park, Namyong Rimer, Mike Zhang, Zhehao Yang, Huanrui Rossi, Ryan A Nguyen, Thien Huu |
description | Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121798841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121798841</sourcerecordid><originalsourceid>FETCH-proquest_journals_31217988413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdFQILi0qS61UyE9TCM5NzMlR8EnMSy9NTE9V8M1PSc0p5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDI0NzSwsLE0Nj4lQBANdaLMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121798841</pqid></control><display><type>article</type><title>A Survey of Small Language Models</title><source>Free E- Journals</source><creator>Chien Van Nguyen ; Shen, Xuan ; Aponte, Ryan ; Yu, Xia ; Basu, Samyadeep ; Hu, Zhengmian ; Chen, Jian ; Parmar, Mihir ; Kunapuli, Sasidhar ; Barrow, Joe ; Wu, Junda ; Singh, Ashish ; Wang, Yu ; Gu, Jiuxiang ; Dernoncourt, Franck ; Ahmed, Nesreen K ; Lipka, Nedim ; Zhang, Ruiyi ; Chen, Xiang ; Yu, Tong ; Kim, Sungchul ; Deilamsalehy, Hanieh ; Park, Namyong ; Rimer, Mike ; Zhang, Zhehao ; Yang, Huanrui ; Rossi, Ryan A ; Nguyen, Thien Huu</creator><creatorcontrib>Chien Van Nguyen ; Shen, Xuan ; Aponte, Ryan ; Yu, Xia ; Basu, Samyadeep ; Hu, Zhengmian ; Chen, Jian ; Parmar, Mihir ; Kunapuli, Sasidhar ; Barrow, Joe ; Wu, Junda ; Singh, Ashish ; Wang, Yu ; Gu, Jiuxiang ; Dernoncourt, Franck ; Ahmed, Nesreen K ; Lipka, Nedim ; Zhang, Ruiyi ; Chen, Xiang ; Yu, Tong ; Kim, Sungchul ; Deilamsalehy, Hanieh ; Park, Namyong ; Rimer, Mike ; Zhang, Zhehao ; Yang, Huanrui ; Rossi, Ryan A ; Nguyen, Thien Huu</creatorcontrib><description>Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Taxonomy</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chien Van Nguyen</creatorcontrib><creatorcontrib>Shen, Xuan</creatorcontrib><creatorcontrib>Aponte, Ryan</creatorcontrib><creatorcontrib>Yu, Xia</creatorcontrib><creatorcontrib>Basu, Samyadeep</creatorcontrib><creatorcontrib>Hu, Zhengmian</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Parmar, Mihir</creatorcontrib><creatorcontrib>Kunapuli, Sasidhar</creatorcontrib><creatorcontrib>Barrow, Joe</creatorcontrib><creatorcontrib>Wu, Junda</creatorcontrib><creatorcontrib>Singh, Ashish</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Gu, Jiuxiang</creatorcontrib><creatorcontrib>Dernoncourt, Franck</creatorcontrib><creatorcontrib>Ahmed, Nesreen K</creatorcontrib><creatorcontrib>Lipka, Nedim</creatorcontrib><creatorcontrib>Zhang, Ruiyi</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Yu, Tong</creatorcontrib><creatorcontrib>Kim, Sungchul</creatorcontrib><creatorcontrib>Deilamsalehy, Hanieh</creatorcontrib><creatorcontrib>Park, Namyong</creatorcontrib><creatorcontrib>Rimer, Mike</creatorcontrib><creatorcontrib>Zhang, Zhehao</creatorcontrib><creatorcontrib>Yang, Huanrui</creatorcontrib><creatorcontrib>Rossi, Ryan A</creatorcontrib><creatorcontrib>Nguyen, Thien Huu</creatorcontrib><title>A Survey of Small Language Models</title><title>arXiv.org</title><description>Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models.</description><subject>Taxonomy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdFQILi0qS61UyE9TCM5NzMlR8EnMSy9NTE9V8M1PSc0p5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDI0NzSwsLE0Nj4lQBANdaLMM</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Chien Van Nguyen</creator><creator>Shen, Xuan</creator><creator>Aponte, Ryan</creator><creator>Yu, Xia</creator><creator>Basu, Samyadeep</creator><creator>Hu, Zhengmian</creator><creator>Chen, Jian</creator><creator>Parmar, Mihir</creator><creator>Kunapuli, Sasidhar</creator><creator>Barrow, Joe</creator><creator>Wu, Junda</creator><creator>Singh, Ashish</creator><creator>Wang, Yu</creator><creator>Gu, Jiuxiang</creator><creator>Dernoncourt, Franck</creator><creator>Ahmed, Nesreen K</creator><creator>Lipka, Nedim</creator><creator>Zhang, Ruiyi</creator><creator>Chen, Xiang</creator><creator>Yu, Tong</creator><creator>Kim, Sungchul</creator><creator>Deilamsalehy, Hanieh</creator><creator>Park, Namyong</creator><creator>Rimer, Mike</creator><creator>Zhang, Zhehao</creator><creator>Yang, Huanrui</creator><creator>Rossi, Ryan A</creator><creator>Nguyen, Thien Huu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241025</creationdate><title>A Survey of Small Language Models</title><author>Chien Van Nguyen ; Shen, Xuan ; Aponte, Ryan ; Yu, Xia ; Basu, Samyadeep ; Hu, Zhengmian ; Chen, Jian ; Parmar, Mihir ; Kunapuli, Sasidhar ; Barrow, Joe ; Wu, Junda ; Singh, Ashish ; Wang, Yu ; Gu, Jiuxiang ; Dernoncourt, Franck ; Ahmed, Nesreen K ; Lipka, Nedim ; Zhang, Ruiyi ; Chen, Xiang ; Yu, Tong ; Kim, Sungchul ; Deilamsalehy, Hanieh ; Park, Namyong ; Rimer, Mike ; Zhang, Zhehao ; Yang, Huanrui ; Rossi, Ryan A ; Nguyen, Thien Huu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31217988413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Taxonomy</topic><toplevel>online_resources</toplevel><creatorcontrib>Chien Van Nguyen</creatorcontrib><creatorcontrib>Shen, Xuan</creatorcontrib><creatorcontrib>Aponte, Ryan</creatorcontrib><creatorcontrib>Yu, Xia</creatorcontrib><creatorcontrib>Basu, Samyadeep</creatorcontrib><creatorcontrib>Hu, Zhengmian</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Parmar, Mihir</creatorcontrib><creatorcontrib>Kunapuli, Sasidhar</creatorcontrib><creatorcontrib>Barrow, Joe</creatorcontrib><creatorcontrib>Wu, Junda</creatorcontrib><creatorcontrib>Singh, Ashish</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Gu, Jiuxiang</creatorcontrib><creatorcontrib>Dernoncourt, Franck</creatorcontrib><creatorcontrib>Ahmed, Nesreen K</creatorcontrib><creatorcontrib>Lipka, Nedim</creatorcontrib><creatorcontrib>Zhang, Ruiyi</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Yu, Tong</creatorcontrib><creatorcontrib>Kim, Sungchul</creatorcontrib><creatorcontrib>Deilamsalehy, Hanieh</creatorcontrib><creatorcontrib>Park, Namyong</creatorcontrib><creatorcontrib>Rimer, Mike</creatorcontrib><creatorcontrib>Zhang, Zhehao</creatorcontrib><creatorcontrib>Yang, Huanrui</creatorcontrib><creatorcontrib>Rossi, Ryan A</creatorcontrib><creatorcontrib>Nguyen, Thien Huu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chien Van Nguyen</au><au>Shen, Xuan</au><au>Aponte, Ryan</au><au>Yu, Xia</au><au>Basu, Samyadeep</au><au>Hu, Zhengmian</au><au>Chen, Jian</au><au>Parmar, Mihir</au><au>Kunapuli, Sasidhar</au><au>Barrow, Joe</au><au>Wu, Junda</au><au>Singh, Ashish</au><au>Wang, Yu</au><au>Gu, Jiuxiang</au><au>Dernoncourt, Franck</au><au>Ahmed, Nesreen K</au><au>Lipka, Nedim</au><au>Zhang, Ruiyi</au><au>Chen, Xiang</au><au>Yu, Tong</au><au>Kim, Sungchul</au><au>Deilamsalehy, Hanieh</au><au>Park, Namyong</au><au>Rimer, Mike</au><au>Zhang, Zhehao</au><au>Yang, Huanrui</au><au>Rossi, Ryan A</au><au>Nguyen, Thien Huu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Survey of Small Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-10-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3121798841 |
source | Free E- Journals |
subjects | Taxonomy |
title | A Survey of Small Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Survey%20of%20Small%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Chien%20Van%20Nguyen&rft.date=2024-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3121798841%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121798841&rft_id=info:pmid/&rfr_iscdi=true |