Dispersive estimates and generalized Boussinesq equation on hyperbolic spaces with rough initial data
We consider the generalized Boussinesq (GBq) equation on the real hyperbolic space \(\mathbb{H}^{n}\) (\(n\geq2\)) in a rough framework based on Lorentz spaces. First, we establish dispersive estimates for the GBq-prototype group, which is associated with a core term of the linear part of the GBq eq...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the generalized Boussinesq (GBq) equation on the real hyperbolic space \(\mathbb{H}^{n}\) (\(n\geq2\)) in a rough framework based on Lorentz spaces. First, we establish dispersive estimates for the GBq-prototype group, which is associated with a core term of the linear part of the GBq equation, through a manifold-intrinsic Fourier analysis and estimates for oscillatory integrals in \(\mathbb{H}^{n}\). Then, we obtain dispersive estimates for the GBq-prototype and Boussinesq groups on Lorentz spaces in the context of \(\mathbb{H}^{n}\). Employing those estimates, we obtain local and global well-posedness results and scattering properties in such framework. Moreover, we prove the polynomial stability of mild solutions and leverage this to improve the scattering decay. |
---|---|
ISSN: | 2331-8422 |