Dispersive estimates and generalized Boussinesq equation on hyperbolic spaces with rough initial data

We consider the generalized Boussinesq (GBq) equation on the real hyperbolic space \(\mathbb{H}^{n}\) (\(n\geq2\)) in a rough framework based on Lorentz spaces. First, we establish dispersive estimates for the GBq-prototype group, which is associated with a core term of the linear part of the GBq eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Ferreira, Lucas C F, Xuan, Pham T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the generalized Boussinesq (GBq) equation on the real hyperbolic space \(\mathbb{H}^{n}\) (\(n\geq2\)) in a rough framework based on Lorentz spaces. First, we establish dispersive estimates for the GBq-prototype group, which is associated with a core term of the linear part of the GBq equation, through a manifold-intrinsic Fourier analysis and estimates for oscillatory integrals in \(\mathbb{H}^{n}\). Then, we obtain dispersive estimates for the GBq-prototype and Boussinesq groups on Lorentz spaces in the context of \(\mathbb{H}^{n}\). Employing those estimates, we obtain local and global well-posedness results and scattering properties in such framework. Moreover, we prove the polynomial stability of mild solutions and leverage this to improve the scattering decay.
ISSN:2331-8422