Almost goodness-of-fit tests
We introduce the almost goodness-of-fit test, a procedure to decide if a (parametric) model provides a good representation of the probability distribution generating the observed sample. We consider the approximate model determined by an M-estimator of the parameters as the best representative of th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Baíllo, Amparo Cárcamo, Javier |
description | We introduce the almost goodness-of-fit test, a procedure to decide if a (parametric) model provides a good representation of the probability distribution generating the observed sample. We consider the approximate model determined by an M-estimator of the parameters as the best representative of the unknown distribution within the parametric class. The objective is the approximate validation of a distribution or an entire parametric family up to a pre-specified threshold value, the margin of error. The methodology also allows quantifying the percentage improvement of the proposed model compared to a non-informative (constant) one. The test statistic is the \(\mathrm{L}^p\)-distance between the empirical distribution function and the corresponding one of the estimated (parametric) model. The value of the parameter \(p\) allows modulating the impact of the tails of the distribution in the validation of the model. By deriving the asymptotic distribution of the test statistic, as well as proving the consistency of its bootstrap approximation, we present an easy-to-implement and flexible method. The performance of the proposal is illustrated with a simulation study and the analysis of a real dataset. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121793755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121793755</sourcerecordid><originalsourceid>FETCH-proquest_journals_31217937553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQcczJzS8uUUjPz0_JSy0u1s1P003LLFEoSS0uKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haVAFfFZ-aVFeUCpeGNDI0NzS2NzoKHEqQIAMOMrrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121793755</pqid></control><display><type>article</type><title>Almost goodness-of-fit tests</title><source>Free E- Journals</source><creator>Baíllo, Amparo ; Cárcamo, Javier</creator><creatorcontrib>Baíllo, Amparo ; Cárcamo, Javier</creatorcontrib><description>We introduce the almost goodness-of-fit test, a procedure to decide if a (parametric) model provides a good representation of the probability distribution generating the observed sample. We consider the approximate model determined by an M-estimator of the parameters as the best representative of the unknown distribution within the parametric class. The objective is the approximate validation of a distribution or an entire parametric family up to a pre-specified threshold value, the margin of error. The methodology also allows quantifying the percentage improvement of the proposed model compared to a non-informative (constant) one. The test statistic is the \(\mathrm{L}^p\)-distance between the empirical distribution function and the corresponding one of the estimated (parametric) model. The value of the parameter \(p\) allows modulating the impact of the tails of the distribution in the validation of the model. By deriving the asymptotic distribution of the test statistic, as well as proving the consistency of its bootstrap approximation, we present an easy-to-implement and flexible method. The performance of the proposal is illustrated with a simulation study and the analysis of a real dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Distribution functions ; Goodness of fit ; Parameter estimation ; Statistical analysis ; Statistical tests</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Baíllo, Amparo</creatorcontrib><creatorcontrib>Cárcamo, Javier</creatorcontrib><title>Almost goodness-of-fit tests</title><title>arXiv.org</title><description>We introduce the almost goodness-of-fit test, a procedure to decide if a (parametric) model provides a good representation of the probability distribution generating the observed sample. We consider the approximate model determined by an M-estimator of the parameters as the best representative of the unknown distribution within the parametric class. The objective is the approximate validation of a distribution or an entire parametric family up to a pre-specified threshold value, the margin of error. The methodology also allows quantifying the percentage improvement of the proposed model compared to a non-informative (constant) one. The test statistic is the \(\mathrm{L}^p\)-distance between the empirical distribution function and the corresponding one of the estimated (parametric) model. The value of the parameter \(p\) allows modulating the impact of the tails of the distribution in the validation of the model. By deriving the asymptotic distribution of the test statistic, as well as proving the consistency of its bootstrap approximation, we present an easy-to-implement and flexible method. The performance of the proposal is illustrated with a simulation study and the analysis of a real dataset.</description><subject>Asymptotic methods</subject><subject>Distribution functions</subject><subject>Goodness of fit</subject><subject>Parameter estimation</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQcczJzS8uUUjPz0_JSy0u1s1P003LLFEoSS0uKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haVAFfFZ-aVFeUCpeGNDI0NzS2NzoKHEqQIAMOMrrg</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Baíllo, Amparo</creator><creator>Cárcamo, Javier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241028</creationdate><title>Almost goodness-of-fit tests</title><author>Baíllo, Amparo ; Cárcamo, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31217937553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Distribution functions</topic><topic>Goodness of fit</topic><topic>Parameter estimation</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><toplevel>online_resources</toplevel><creatorcontrib>Baíllo, Amparo</creatorcontrib><creatorcontrib>Cárcamo, Javier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baíllo, Amparo</au><au>Cárcamo, Javier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Almost goodness-of-fit tests</atitle><jtitle>arXiv.org</jtitle><date>2024-10-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce the almost goodness-of-fit test, a procedure to decide if a (parametric) model provides a good representation of the probability distribution generating the observed sample. We consider the approximate model determined by an M-estimator of the parameters as the best representative of the unknown distribution within the parametric class. The objective is the approximate validation of a distribution or an entire parametric family up to a pre-specified threshold value, the margin of error. The methodology also allows quantifying the percentage improvement of the proposed model compared to a non-informative (constant) one. The test statistic is the \(\mathrm{L}^p\)-distance between the empirical distribution function and the corresponding one of the estimated (parametric) model. The value of the parameter \(p\) allows modulating the impact of the tails of the distribution in the validation of the model. By deriving the asymptotic distribution of the test statistic, as well as proving the consistency of its bootstrap approximation, we present an easy-to-implement and flexible method. The performance of the proposal is illustrated with a simulation study and the analysis of a real dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3121793755 |
source | Free E- Journals |
subjects | Asymptotic methods Distribution functions Goodness of fit Parameter estimation Statistical analysis Statistical tests |
title | Almost goodness-of-fit tests |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Almost%20goodness-of-fit%20tests&rft.jtitle=arXiv.org&rft.au=Ba%C3%ADllo,%20Amparo&rft.date=2024-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3121793755%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121793755&rft_id=info:pmid/&rfr_iscdi=true |