FreqMark: Invisible Image Watermarking via Frequency Based Optimization in Latent Space

Invisible watermarking is essential for safeguarding digital content, enabling copyright protection and content authentication. However, existing watermarking methods fall short in robustness against regeneration attacks. In this paper, we propose a novel method called FreqMark that involves unconst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Guo, Yiyang, Li, Ruizhe, Mude Hui, Guo, Hanzhong, Zhang, Chen, Cai, Chuangjian, Le, Wan, Wang, Shangfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Guo, Yiyang
Li, Ruizhe
Mude Hui
Guo, Hanzhong
Zhang, Chen
Cai, Chuangjian
Le, Wan
Wang, Shangfei
description Invisible watermarking is essential for safeguarding digital content, enabling copyright protection and content authentication. However, existing watermarking methods fall short in robustness against regeneration attacks. In this paper, we propose a novel method called FreqMark that involves unconstrained optimization of the image latent frequency space obtained after VAE encoding. Specifically, FreqMark embeds the watermark by optimizing the latent frequency space of the images and then extracts the watermark through a pre-trained image encoder. This optimization allows a flexible trade-off between image quality with watermark robustness and effectively resists regeneration attacks. Experimental results demonstrate that FreqMark offers significant advantages in image quality and robustness, permits flexible selection of the encoding bit number, and achieves a bit accuracy exceeding 90% when encoding a 48-bit hidden message under various attack scenarios.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121789863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121789863</sourcerecordid><originalsourceid>FETCH-proquest_journals_31217898633</originalsourceid><addsrcrecordid>eNqNjM0KgkAURocgSMp3uNBa0Jn8qWWRFBQtClzKZJNc09FmRqGevgl6gFbf4pzzjYhDGQu8ZEHphLhaV77v0yimYcgckqVKPI9cPVawlwNqvNYC9g0vBWTcCNVYhLKEATl81V7I4gVrrsUNTp3BBt_cYCsBJRxsIA2cO16IGRnfea2F-9spmafby2bndaq1J9rkVdsraVHOAhrEyTKJGPvP-gAk90FG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121789863</pqid></control><display><type>article</type><title>FreqMark: Invisible Image Watermarking via Frequency Based Optimization in Latent Space</title><source>Free E- Journals</source><creator>Guo, Yiyang ; Li, Ruizhe ; Mude Hui ; Guo, Hanzhong ; Zhang, Chen ; Cai, Chuangjian ; Le, Wan ; Wang, Shangfei</creator><creatorcontrib>Guo, Yiyang ; Li, Ruizhe ; Mude Hui ; Guo, Hanzhong ; Zhang, Chen ; Cai, Chuangjian ; Le, Wan ; Wang, Shangfei</creatorcontrib><description>Invisible watermarking is essential for safeguarding digital content, enabling copyright protection and content authentication. However, existing watermarking methods fall short in robustness against regeneration attacks. In this paper, we propose a novel method called FreqMark that involves unconstrained optimization of the image latent frequency space obtained after VAE encoding. Specifically, FreqMark embeds the watermark by optimizing the latent frequency space of the images and then extracts the watermark through a pre-trained image encoder. This optimization allows a flexible trade-off between image quality with watermark robustness and effectively resists regeneration attacks. Experimental results demonstrate that FreqMark offers significant advantages in image quality and robustness, permits flexible selection of the encoding bit number, and achieves a bit accuracy exceeding 90% when encoding a 48-bit hidden message under various attack scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Copy protection ; Digital imaging ; Image quality ; Optimization ; Regeneration ; Robustness ; Watermarking</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Guo, Yiyang</creatorcontrib><creatorcontrib>Li, Ruizhe</creatorcontrib><creatorcontrib>Mude Hui</creatorcontrib><creatorcontrib>Guo, Hanzhong</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Cai, Chuangjian</creatorcontrib><creatorcontrib>Le, Wan</creatorcontrib><creatorcontrib>Wang, Shangfei</creatorcontrib><title>FreqMark: Invisible Image Watermarking via Frequency Based Optimization in Latent Space</title><title>arXiv.org</title><description>Invisible watermarking is essential for safeguarding digital content, enabling copyright protection and content authentication. However, existing watermarking methods fall short in robustness against regeneration attacks. In this paper, we propose a novel method called FreqMark that involves unconstrained optimization of the image latent frequency space obtained after VAE encoding. Specifically, FreqMark embeds the watermark by optimizing the latent frequency space of the images and then extracts the watermark through a pre-trained image encoder. This optimization allows a flexible trade-off between image quality with watermark robustness and effectively resists regeneration attacks. Experimental results demonstrate that FreqMark offers significant advantages in image quality and robustness, permits flexible selection of the encoding bit number, and achieves a bit accuracy exceeding 90% when encoding a 48-bit hidden message under various attack scenarios.</description><subject>Coding</subject><subject>Copy protection</subject><subject>Digital imaging</subject><subject>Image quality</subject><subject>Optimization</subject><subject>Regeneration</subject><subject>Robustness</subject><subject>Watermarking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0KgkAURocgSMp3uNBa0Jn8qWWRFBQtClzKZJNc09FmRqGevgl6gFbf4pzzjYhDGQu8ZEHphLhaV77v0yimYcgckqVKPI9cPVawlwNqvNYC9g0vBWTcCNVYhLKEATl81V7I4gVrrsUNTp3BBt_cYCsBJRxsIA2cO16IGRnfea2F-9spmafby2bndaq1J9rkVdsraVHOAhrEyTKJGPvP-gAk90FG</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Guo, Yiyang</creator><creator>Li, Ruizhe</creator><creator>Mude Hui</creator><creator>Guo, Hanzhong</creator><creator>Zhang, Chen</creator><creator>Cai, Chuangjian</creator><creator>Le, Wan</creator><creator>Wang, Shangfei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241028</creationdate><title>FreqMark: Invisible Image Watermarking via Frequency Based Optimization in Latent Space</title><author>Guo, Yiyang ; Li, Ruizhe ; Mude Hui ; Guo, Hanzhong ; Zhang, Chen ; Cai, Chuangjian ; Le, Wan ; Wang, Shangfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31217898633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding</topic><topic>Copy protection</topic><topic>Digital imaging</topic><topic>Image quality</topic><topic>Optimization</topic><topic>Regeneration</topic><topic>Robustness</topic><topic>Watermarking</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yiyang</creatorcontrib><creatorcontrib>Li, Ruizhe</creatorcontrib><creatorcontrib>Mude Hui</creatorcontrib><creatorcontrib>Guo, Hanzhong</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Cai, Chuangjian</creatorcontrib><creatorcontrib>Le, Wan</creatorcontrib><creatorcontrib>Wang, Shangfei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yiyang</au><au>Li, Ruizhe</au><au>Mude Hui</au><au>Guo, Hanzhong</au><au>Zhang, Chen</au><au>Cai, Chuangjian</au><au>Le, Wan</au><au>Wang, Shangfei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>FreqMark: Invisible Image Watermarking via Frequency Based Optimization in Latent Space</atitle><jtitle>arXiv.org</jtitle><date>2024-10-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Invisible watermarking is essential for safeguarding digital content, enabling copyright protection and content authentication. However, existing watermarking methods fall short in robustness against regeneration attacks. In this paper, we propose a novel method called FreqMark that involves unconstrained optimization of the image latent frequency space obtained after VAE encoding. Specifically, FreqMark embeds the watermark by optimizing the latent frequency space of the images and then extracts the watermark through a pre-trained image encoder. This optimization allows a flexible trade-off between image quality with watermark robustness and effectively resists regeneration attacks. Experimental results demonstrate that FreqMark offers significant advantages in image quality and robustness, permits flexible selection of the encoding bit number, and achieves a bit accuracy exceeding 90% when encoding a 48-bit hidden message under various attack scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3121789863
source Free E- Journals
subjects Coding
Copy protection
Digital imaging
Image quality
Optimization
Regeneration
Robustness
Watermarking
title FreqMark: Invisible Image Watermarking via Frequency Based Optimization in Latent Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=FreqMark:%20Invisible%20Image%20Watermarking%20via%20Frequency%20Based%20Optimization%20in%20Latent%20Space&rft.jtitle=arXiv.org&rft.au=Guo,%20Yiyang&rft.date=2024-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3121789863%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121789863&rft_id=info:pmid/&rfr_iscdi=true