Improving Model Evaluation using SMART Filtering of Benchmark Datasets
One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (S...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gupta, Vipul Ross, Candace Pantoja, David Passonneau, Rebecca J Ung, Megan Williams, Adina |
description | One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (SMART) filtering, a novel approach to select a high-quality subset of examples from existing benchmark datasets by systematically removing less informative and less challenging examples. Our approach applies three filtering criteria, removing (i) easy examples, (ii) data-contaminated examples, and (iii) examples that are similar to each other based on distance in an embedding space. We demonstrate the effectiveness of SMART on three multiple choice QA datasets, where our methodology increases efficiency by reducing dataset size by 48\% on average, while increasing Pearson correlation with rankings from ChatBot Arena, a more open-ended human evaluation setting. Our method enables us to be more efficient, whether using SMART to make new benchmarks more challenging or to revitalize older datasets, while still preserving the relative model rankings. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121789770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121789770</sourcerecordid><originalsourceid>FETCH-proquest_journals_31217897703</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw88wtKMovy8xLV_DNT0nNUXAtS8wpTSzJzM9TKC0GCQf7OgaFKLhl5pSkFoH4-WkKTql5yRm5iUXZCi6JJYnFqSXFPAysaYk5xam8UJqbQdnNNcTZQxdoeGFpanFJfFZ-aVEeUCre2NDI0NzC0tzcwJg4VQCF8jrT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121789770</pqid></control><display><type>article</type><title>Improving Model Evaluation using SMART Filtering of Benchmark Datasets</title><source>Free E- Journals</source><creator>Gupta, Vipul ; Ross, Candace ; Pantoja, David ; Passonneau, Rebecca J ; Ung, Megan ; Williams, Adina</creator><creatorcontrib>Gupta, Vipul ; Ross, Candace ; Pantoja, David ; Passonneau, Rebecca J ; Ung, Megan ; Williams, Adina</creatorcontrib><description>One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (SMART) filtering, a novel approach to select a high-quality subset of examples from existing benchmark datasets by systematically removing less informative and less challenging examples. Our approach applies three filtering criteria, removing (i) easy examples, (ii) data-contaminated examples, and (iii) examples that are similar to each other based on distance in an embedding space. We demonstrate the effectiveness of SMART on three multiple choice QA datasets, where our methodology increases efficiency by reducing dataset size by 48\% on average, while increasing Pearson correlation with rankings from ChatBot Arena, a more open-ended human evaluation setting. Our method enables us to be more efficient, whether using SMART to make new benchmarks more challenging or to revitalize older datasets, while still preserving the relative model rankings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Datasets ; Filtration ; Regeneration</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Gupta, Vipul</creatorcontrib><creatorcontrib>Ross, Candace</creatorcontrib><creatorcontrib>Pantoja, David</creatorcontrib><creatorcontrib>Passonneau, Rebecca J</creatorcontrib><creatorcontrib>Ung, Megan</creatorcontrib><creatorcontrib>Williams, Adina</creatorcontrib><title>Improving Model Evaluation using SMART Filtering of Benchmark Datasets</title><title>arXiv.org</title><description>One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (SMART) filtering, a novel approach to select a high-quality subset of examples from existing benchmark datasets by systematically removing less informative and less challenging examples. Our approach applies three filtering criteria, removing (i) easy examples, (ii) data-contaminated examples, and (iii) examples that are similar to each other based on distance in an embedding space. We demonstrate the effectiveness of SMART on three multiple choice QA datasets, where our methodology increases efficiency by reducing dataset size by 48\% on average, while increasing Pearson correlation with rankings from ChatBot Arena, a more open-ended human evaluation setting. Our method enables us to be more efficient, whether using SMART to make new benchmarks more challenging or to revitalize older datasets, while still preserving the relative model rankings.</description><subject>Benchmarks</subject><subject>Datasets</subject><subject>Filtration</subject><subject>Regeneration</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw88wtKMovy8xLV_DNT0nNUXAtS8wpTSzJzM9TKC0GCQf7OgaFKLhl5pSkFoH4-WkKTql5yRm5iUXZCi6JJYnFqSXFPAysaYk5xam8UJqbQdnNNcTZQxdoeGFpanFJfFZ-aVEeUCre2NDI0NzC0tzcwJg4VQCF8jrT</recordid><startdate>20241026</startdate><enddate>20241026</enddate><creator>Gupta, Vipul</creator><creator>Ross, Candace</creator><creator>Pantoja, David</creator><creator>Passonneau, Rebecca J</creator><creator>Ung, Megan</creator><creator>Williams, Adina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241026</creationdate><title>Improving Model Evaluation using SMART Filtering of Benchmark Datasets</title><author>Gupta, Vipul ; Ross, Candace ; Pantoja, David ; Passonneau, Rebecca J ; Ung, Megan ; Williams, Adina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31217897703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Datasets</topic><topic>Filtration</topic><topic>Regeneration</topic><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Vipul</creatorcontrib><creatorcontrib>Ross, Candace</creatorcontrib><creatorcontrib>Pantoja, David</creatorcontrib><creatorcontrib>Passonneau, Rebecca J</creatorcontrib><creatorcontrib>Ung, Megan</creatorcontrib><creatorcontrib>Williams, Adina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Vipul</au><au>Ross, Candace</au><au>Pantoja, David</au><au>Passonneau, Rebecca J</au><au>Ung, Megan</au><au>Williams, Adina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Model Evaluation using SMART Filtering of Benchmark Datasets</atitle><jtitle>arXiv.org</jtitle><date>2024-10-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>One of the most challenging problems facing NLP today is evaluation. Some of the most pressing issues pertain to benchmark saturation, data contamination, and diversity in the quality of test examples. To address these concerns, we propose Selection Methodology for Accurate, Reduced, and Targeted (SMART) filtering, a novel approach to select a high-quality subset of examples from existing benchmark datasets by systematically removing less informative and less challenging examples. Our approach applies three filtering criteria, removing (i) easy examples, (ii) data-contaminated examples, and (iii) examples that are similar to each other based on distance in an embedding space. We demonstrate the effectiveness of SMART on three multiple choice QA datasets, where our methodology increases efficiency by reducing dataset size by 48\% on average, while increasing Pearson correlation with rankings from ChatBot Arena, a more open-ended human evaluation setting. Our method enables us to be more efficient, whether using SMART to make new benchmarks more challenging or to revitalize older datasets, while still preserving the relative model rankings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3121789770 |
source | Free E- Journals |
subjects | Benchmarks Datasets Filtration Regeneration |
title | Improving Model Evaluation using SMART Filtering of Benchmark Datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Model%20Evaluation%20using%20SMART%20Filtering%20of%20Benchmark%20Datasets&rft.jtitle=arXiv.org&rft.au=Gupta,%20Vipul&rft.date=2024-10-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3121789770%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121789770&rft_id=info:pmid/&rfr_iscdi=true |