Circulating current mitigation for renewable-based modular seven-level converter using deep learning-optimized fractional-order proportional resonant controller

Modular multi-level converters (MMCs) are often used for high and medium voltage applications. However, to reduce losses and costs, many researchers prefer a half-bridge converter. In addition, the half-bridge-based MMC is vulnerable in the event of an error, so the full-bridge MMC is used here to w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2024, Vol.106 (5), p.5543-5556
Hauptverfasser: Nagaraja, K. G., Ramesh, H. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5556
container_issue 5
container_start_page 5543
container_title Electrical engineering
container_volume 106
creator Nagaraja, K. G.
Ramesh, H. R.
description Modular multi-level converters (MMCs) are often used for high and medium voltage applications. However, to reduce losses and costs, many researchers prefer a half-bridge converter. In addition, the half-bridge-based MMC is vulnerable in the event of an error, so the full-bridge MMC is used here to work with faulty network states. The losses and harmonics in the system could be reduced by using an appropriate arm voltage and circulating current control model. In order to operate the MMC in a grid-tied renewable system, both outer and inner loop control were performed. In order to realize outer-loop control, a fractional-order proportional–integral–derivative controller using a deep learning technique is proposed. An active power filter-based fractional-order proportional resonant controller with improved pulse width modulation achieves arm balancing with harmonic mitigated circulating current regulation. The simulation shows that the proposed method reduced the current and voltage harmonics to 71.56% and 10.42% through an improved control strategy based on pulse width modulation.
doi_str_mv 10.1007/s00202-024-02275-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121576813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121576813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1a09e283e9c099bf523075ad2d56ef33ebe9a04c2bf1521186f9af7302d63be03</originalsourceid><addsrcrecordid>eNp9UcFq3TAQFCWFvqT9gZ4EPatdSfazdSyPtgkEeknOQrZXDwc9y13ZKc3X9FOzLw701sPuomFmNDBCfNTwWQM0XwqAAaPAVDymqZV-I3a6sgxVbXMhduCqVjXO6HfispQHALC1q3bi72Gkfk1hGaej7FcinBZ5GpfxyFCeZMwkGcPfoUuoulBwkKc8sIJkwUecVOKdZJ-nR6QFSa7lbDUgzjJhoIlfKs_LeBqfWBsp9GfjkFSmgekz5TnTBvFPhS8nYLuFckpI78XbGFLBD6_3Stx__3Z3uFa3P3_cHL7eqt40sCgdwKFpLboenOtibSw0dRjMUO8xWosdugBVb7qoa6N1u48uxMaCGfa2Q7BX4tPmy4F-rVgW_5BX4lDFW2103exbbZllNlZPuRTC6GcaT4H-eA3-3ITfmvDchH9pwmsW2U1UmDwdkf5Z_0f1DCNJkR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121576813</pqid></control><display><type>article</type><title>Circulating current mitigation for renewable-based modular seven-level converter using deep learning-optimized fractional-order proportional resonant controller</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nagaraja, K. G. ; Ramesh, H. R.</creator><creatorcontrib>Nagaraja, K. G. ; Ramesh, H. R.</creatorcontrib><description>Modular multi-level converters (MMCs) are often used for high and medium voltage applications. However, to reduce losses and costs, many researchers prefer a half-bridge converter. In addition, the half-bridge-based MMC is vulnerable in the event of an error, so the full-bridge MMC is used here to work with faulty network states. The losses and harmonics in the system could be reduced by using an appropriate arm voltage and circulating current control model. In order to operate the MMC in a grid-tied renewable system, both outer and inner loop control were performed. In order to realize outer-loop control, a fractional-order proportional–integral–derivative controller using a deep learning technique is proposed. An active power filter-based fractional-order proportional resonant controller with improved pulse width modulation achieves arm balancing with harmonic mitigated circulating current regulation. The simulation shows that the proposed method reduced the current and voltage harmonics to 71.56% and 10.42% through an improved control strategy based on pulse width modulation.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-024-02275-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Circulation ; Control systems ; Controllers ; Deep learning ; Economics and Management ; Electric bridges ; Electric converters ; Electric potential ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Harmonics ; Original Paper ; Power Electronics ; Proportional integral derivative ; Pulse duration modulation ; Voltage</subject><ispartof>Electrical engineering, 2024, Vol.106 (5), p.5543-5556</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1a09e283e9c099bf523075ad2d56ef33ebe9a04c2bf1521186f9af7302d63be03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-024-02275-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-024-02275-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nagaraja, K. G.</creatorcontrib><creatorcontrib>Ramesh, H. R.</creatorcontrib><title>Circulating current mitigation for renewable-based modular seven-level converter using deep learning-optimized fractional-order proportional resonant controller</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>Modular multi-level converters (MMCs) are often used for high and medium voltage applications. However, to reduce losses and costs, many researchers prefer a half-bridge converter. In addition, the half-bridge-based MMC is vulnerable in the event of an error, so the full-bridge MMC is used here to work with faulty network states. The losses and harmonics in the system could be reduced by using an appropriate arm voltage and circulating current control model. In order to operate the MMC in a grid-tied renewable system, both outer and inner loop control were performed. In order to realize outer-loop control, a fractional-order proportional–integral–derivative controller using a deep learning technique is proposed. An active power filter-based fractional-order proportional resonant controller with improved pulse width modulation achieves arm balancing with harmonic mitigated circulating current regulation. The simulation shows that the proposed method reduced the current and voltage harmonics to 71.56% and 10.42% through an improved control strategy based on pulse width modulation.</description><subject>Circulation</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Deep learning</subject><subject>Economics and Management</subject><subject>Electric bridges</subject><subject>Electric converters</subject><subject>Electric potential</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Harmonics</subject><subject>Original Paper</subject><subject>Power Electronics</subject><subject>Proportional integral derivative</subject><subject>Pulse duration modulation</subject><subject>Voltage</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UcFq3TAQFCWFvqT9gZ4EPatdSfazdSyPtgkEeknOQrZXDwc9y13ZKc3X9FOzLw701sPuomFmNDBCfNTwWQM0XwqAAaPAVDymqZV-I3a6sgxVbXMhduCqVjXO6HfispQHALC1q3bi72Gkfk1hGaej7FcinBZ5GpfxyFCeZMwkGcPfoUuoulBwkKc8sIJkwUecVOKdZJ-nR6QFSa7lbDUgzjJhoIlfKs_LeBqfWBsp9GfjkFSmgekz5TnTBvFPhS8nYLuFckpI78XbGFLBD6_3Stx__3Z3uFa3P3_cHL7eqt40sCgdwKFpLboenOtibSw0dRjMUO8xWosdugBVb7qoa6N1u48uxMaCGfa2Q7BX4tPmy4F-rVgW_5BX4lDFW2103exbbZllNlZPuRTC6GcaT4H-eA3-3ITfmvDchH9pwmsW2U1UmDwdkf5Z_0f1DCNJkR0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Nagaraja, K. G.</creator><creator>Ramesh, H. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Circulating current mitigation for renewable-based modular seven-level converter using deep learning-optimized fractional-order proportional resonant controller</title><author>Nagaraja, K. G. ; Ramesh, H. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1a09e283e9c099bf523075ad2d56ef33ebe9a04c2bf1521186f9af7302d63be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circulation</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Deep learning</topic><topic>Economics and Management</topic><topic>Electric bridges</topic><topic>Electric converters</topic><topic>Electric potential</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Harmonics</topic><topic>Original Paper</topic><topic>Power Electronics</topic><topic>Proportional integral derivative</topic><topic>Pulse duration modulation</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagaraja, K. G.</creatorcontrib><creatorcontrib>Ramesh, H. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagaraja, K. G.</au><au>Ramesh, H. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circulating current mitigation for renewable-based modular seven-level converter using deep learning-optimized fractional-order proportional resonant controller</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2024</date><risdate>2024</risdate><volume>106</volume><issue>5</issue><spage>5543</spage><epage>5556</epage><pages>5543-5556</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>Modular multi-level converters (MMCs) are often used for high and medium voltage applications. However, to reduce losses and costs, many researchers prefer a half-bridge converter. In addition, the half-bridge-based MMC is vulnerable in the event of an error, so the full-bridge MMC is used here to work with faulty network states. The losses and harmonics in the system could be reduced by using an appropriate arm voltage and circulating current control model. In order to operate the MMC in a grid-tied renewable system, both outer and inner loop control were performed. In order to realize outer-loop control, a fractional-order proportional–integral–derivative controller using a deep learning technique is proposed. An active power filter-based fractional-order proportional resonant controller with improved pulse width modulation achieves arm balancing with harmonic mitigated circulating current regulation. The simulation shows that the proposed method reduced the current and voltage harmonics to 71.56% and 10.42% through an improved control strategy based on pulse width modulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-024-02275-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0948-7921
ispartof Electrical engineering, 2024, Vol.106 (5), p.5543-5556
issn 0948-7921
1432-0487
language eng
recordid cdi_proquest_journals_3121576813
source SpringerLink Journals - AutoHoldings
subjects Circulation
Control systems
Controllers
Deep learning
Economics and Management
Electric bridges
Electric converters
Electric potential
Electrical Engineering
Electrical Machines and Networks
Energy Policy
Engineering
Harmonics
Original Paper
Power Electronics
Proportional integral derivative
Pulse duration modulation
Voltage
title Circulating current mitigation for renewable-based modular seven-level converter using deep learning-optimized fractional-order proportional resonant controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circulating%20current%20mitigation%20for%20renewable-based%20modular%20seven-level%20converter%20using%20deep%20learning-optimized%20fractional-order%20proportional%20resonant%20controller&rft.jtitle=Electrical%20engineering&rft.au=Nagaraja,%20K.%20G.&rft.date=2024&rft.volume=106&rft.issue=5&rft.spage=5543&rft.epage=5556&rft.pages=5543-5556&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-024-02275-1&rft_dat=%3Cproquest_cross%3E3121576813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121576813&rft_id=info:pmid/&rfr_iscdi=true