Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling
Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected D...
Gespeichert in:
Veröffentlicht in: | Electrical engineering 2024, Vol.106 (5), p.6533-6546 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6546 |
---|---|
container_issue | 5 |
container_start_page | 6533 |
container_title | Electrical engineering |
container_volume | 106 |
creator | Li, Jingli Li, Chuanju Zhu, Zizhuo Liu, Luyao Wang, Leilei Yuan, Hao Ren, Junyue |
description | Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected DC projects. The paper proposes a dynamic finite element model of ocean grounding electrode characteristics based on the coupling of circuits and electrical–thermal fields. In the finite element model, soil parameters can be controlled by the time-varying temperature distribution, and the dynamic process of the coupling of soil electrical and thermal fields in the process of direct flow can be accurately simulated. A time-varying equivalent circuit model for controlling the electric–thermal field can be implemented to accurately simulate the dynamic process of the shunt coefficient for each conductor segment in a composite DC grounding electrode with multiple injection points. The effectiveness is verified by comparing with the experimental data. Finally, the dynamic flow process, temperature rise process and their mutual influence are quantitatively analyzed. |
doi_str_mv | 10.1007/s00202-024-02395-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121576802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121576802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c959701c0a6de002839aa18ef36159aa5d626fedf6ebd516b56ccbd536973be03</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yWmAN2nDjJiCoKSJVYYLYc-6V1ldjFdoZu_Qf-kC_BJZXYGCxfPd97n3wQuqXknhJSPQRCcpJnJC_SYU2Z1WdoRguWRkVdnaMZaYo6q5qcXqKrELaEEFY2xQwdlsaaCBh6GMBGrPdWDkbhwWnoseuwUyAtXns3Wm3s-mhU0adXrDbSSxXBmxCNCriVATR2Fivj1Wgillaf7EZ9H77iBvwge9wZ6DVWbtz1qfAaXXSyD3BzuufoY_n0vnjJVm_Pr4vHVabyisRMNWVTEaqI5BrSZ2vWSElr6BinZZKl5jnvQHccWl1S3pZcqaQYbyrWAmFzdDf17rz7HCFEsXWjt2mlYDSnZcXrRG6O8smlvAvBQyd23gzS7wUl4khaTKRFIi1-SYs6hdgUCsls1-D_qv9J_QAQw4Sy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121576802</pqid></control><display><type>article</type><title>Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jingli ; Li, Chuanju ; Zhu, Zizhuo ; Liu, Luyao ; Wang, Leilei ; Yuan, Hao ; Ren, Junyue</creator><creatorcontrib>Li, Jingli ; Li, Chuanju ; Zhu, Zizhuo ; Liu, Luyao ; Wang, Leilei ; Yuan, Hao ; Ren, Junyue</creatorcontrib><description>Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected DC projects. The paper proposes a dynamic finite element model of ocean grounding electrode characteristics based on the coupling of circuits and electrical–thermal fields. In the finite element model, soil parameters can be controlled by the time-varying temperature distribution, and the dynamic process of the coupling of soil electrical and thermal fields in the process of direct flow can be accurately simulated. A time-varying equivalent circuit model for controlling the electric–thermal field can be implemented to accurately simulate the dynamic process of the shunt coefficient for each conductor segment in a composite DC grounding electrode with multiple injection points. The effectiveness is verified by comparing with the experimental data. Finally, the dynamic flow process, temperature rise process and their mutual influence are quantitatively analyzed.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-024-02395-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coupling ; Direct current ; Dynamic models ; Economics and Management ; Electrical Engineering ; Electrical grounding ; Electrical Machines and Networks ; Electrodes ; Energy Policy ; Engineering ; Equivalent circuits ; Finite element method ; Offshore energy sources ; Offshore structures ; Original Paper ; Parameters ; Power Electronics ; Seawater ; Soil structure ; Temperature distribution ; Thermodynamic properties ; Wind effects ; Wind power</subject><ispartof>Electrical engineering, 2024, Vol.106 (5), p.6533-6546</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c959701c0a6de002839aa18ef36159aa5d626fedf6ebd516b56ccbd536973be03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-024-02395-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-024-02395-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Jingli</creatorcontrib><creatorcontrib>Li, Chuanju</creatorcontrib><creatorcontrib>Zhu, Zizhuo</creatorcontrib><creatorcontrib>Liu, Luyao</creatorcontrib><creatorcontrib>Wang, Leilei</creatorcontrib><creatorcontrib>Yuan, Hao</creatorcontrib><creatorcontrib>Ren, Junyue</creatorcontrib><title>Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected DC projects. The paper proposes a dynamic finite element model of ocean grounding electrode characteristics based on the coupling of circuits and electrical–thermal fields. In the finite element model, soil parameters can be controlled by the time-varying temperature distribution, and the dynamic process of the coupling of soil electrical and thermal fields in the process of direct flow can be accurately simulated. A time-varying equivalent circuit model for controlling the electric–thermal field can be implemented to accurately simulate the dynamic process of the shunt coefficient for each conductor segment in a composite DC grounding electrode with multiple injection points. The effectiveness is verified by comparing with the experimental data. Finally, the dynamic flow process, temperature rise process and their mutual influence are quantitatively analyzed.</description><subject>Coupling</subject><subject>Direct current</subject><subject>Dynamic models</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical grounding</subject><subject>Electrical Machines and Networks</subject><subject>Electrodes</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Equivalent circuits</subject><subject>Finite element method</subject><subject>Offshore energy sources</subject><subject>Offshore structures</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Power Electronics</subject><subject>Seawater</subject><subject>Soil structure</subject><subject>Temperature distribution</subject><subject>Thermodynamic properties</subject><subject>Wind effects</subject><subject>Wind power</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwA0yWmAN2nDjJiCoKSJVYYLYc-6V1ldjFdoZu_Qf-kC_BJZXYGCxfPd97n3wQuqXknhJSPQRCcpJnJC_SYU2Z1WdoRguWRkVdnaMZaYo6q5qcXqKrELaEEFY2xQwdlsaaCBh6GMBGrPdWDkbhwWnoseuwUyAtXns3Wm3s-mhU0adXrDbSSxXBmxCNCriVATR2Fivj1Wgillaf7EZ9H77iBvwge9wZ6DVWbtz1qfAaXXSyD3BzuufoY_n0vnjJVm_Pr4vHVabyisRMNWVTEaqI5BrSZ2vWSElr6BinZZKl5jnvQHccWl1S3pZcqaQYbyrWAmFzdDf17rz7HCFEsXWjt2mlYDSnZcXrRG6O8smlvAvBQyd23gzS7wUl4khaTKRFIi1-SYs6hdgUCsls1-D_qv9J_QAQw4Sy</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Jingli</creator><creator>Li, Chuanju</creator><creator>Zhu, Zizhuo</creator><creator>Liu, Luyao</creator><creator>Wang, Leilei</creator><creator>Yuan, Hao</creator><creator>Ren, Junyue</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling</title><author>Li, Jingli ; Li, Chuanju ; Zhu, Zizhuo ; Liu, Luyao ; Wang, Leilei ; Yuan, Hao ; Ren, Junyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c959701c0a6de002839aa18ef36159aa5d626fedf6ebd516b56ccbd536973be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coupling</topic><topic>Direct current</topic><topic>Dynamic models</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical grounding</topic><topic>Electrical Machines and Networks</topic><topic>Electrodes</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Equivalent circuits</topic><topic>Finite element method</topic><topic>Offshore energy sources</topic><topic>Offshore structures</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Power Electronics</topic><topic>Seawater</topic><topic>Soil structure</topic><topic>Temperature distribution</topic><topic>Thermodynamic properties</topic><topic>Wind effects</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingli</creatorcontrib><creatorcontrib>Li, Chuanju</creatorcontrib><creatorcontrib>Zhu, Zizhuo</creatorcontrib><creatorcontrib>Liu, Luyao</creatorcontrib><creatorcontrib>Wang, Leilei</creatorcontrib><creatorcontrib>Yuan, Hao</creatorcontrib><creatorcontrib>Ren, Junyue</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingli</au><au>Li, Chuanju</au><au>Zhu, Zizhuo</au><au>Liu, Luyao</au><au>Wang, Leilei</au><au>Yuan, Hao</au><au>Ren, Junyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2024</date><risdate>2024</risdate><volume>106</volume><issue>5</issue><spage>6533</spage><epage>6546</epage><pages>6533-6546</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected DC projects. The paper proposes a dynamic finite element model of ocean grounding electrode characteristics based on the coupling of circuits and electrical–thermal fields. In the finite element model, soil parameters can be controlled by the time-varying temperature distribution, and the dynamic process of the coupling of soil electrical and thermal fields in the process of direct flow can be accurately simulated. A time-varying equivalent circuit model for controlling the electric–thermal field can be implemented to accurately simulate the dynamic process of the shunt coefficient for each conductor segment in a composite DC grounding electrode with multiple injection points. The effectiveness is verified by comparing with the experimental data. Finally, the dynamic flow process, temperature rise process and their mutual influence are quantitatively analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-024-02395-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-7921 |
ispartof | Electrical engineering, 2024, Vol.106 (5), p.6533-6546 |
issn | 0948-7921 1432-0487 |
language | eng |
recordid | cdi_proquest_journals_3121576802 |
source | SpringerLink Journals - AutoHoldings |
subjects | Coupling Direct current Dynamic models Economics and Management Electrical Engineering Electrical grounding Electrical Machines and Networks Electrodes Energy Policy Engineering Equivalent circuits Finite element method Offshore energy sources Offshore structures Original Paper Parameters Power Electronics Seawater Soil structure Temperature distribution Thermodynamic properties Wind effects Wind power |
title | Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20dynamic%20model%20of%20ocean%20grounding%20electrode%20characteristics%20based%20on%20circuit%20and%20electric%E2%80%93thermal%20field%20coupling&rft.jtitle=Electrical%20engineering&rft.au=Li,%20Jingli&rft.date=2024&rft.volume=106&rft.issue=5&rft.spage=6533&rft.epage=6546&rft.pages=6533-6546&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-024-02395-8&rft_dat=%3Cproquest_cross%3E3121576802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121576802&rft_id=info:pmid/&rfr_iscdi=true |