Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling

Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2024, Vol.106 (5), p.6533-6546
Hauptverfasser: Li, Jingli, Li, Chuanju, Zhu, Zizhuo, Liu, Luyao, Wang, Leilei, Yuan, Hao, Ren, Junyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6546
container_issue 5
container_start_page 6533
container_title Electrical engineering
container_volume 106
creator Li, Jingli
Li, Chuanju
Zhu, Zizhuo
Liu, Luyao
Wang, Leilei
Yuan, Hao
Ren, Junyue
description Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected DC projects. The paper proposes a dynamic finite element model of ocean grounding electrode characteristics based on the coupling of circuits and electrical–thermal fields. In the finite element model, soil parameters can be controlled by the time-varying temperature distribution, and the dynamic process of the coupling of soil electrical and thermal fields in the process of direct flow can be accurately simulated. A time-varying equivalent circuit model for controlling the electric–thermal field can be implemented to accurately simulate the dynamic process of the shunt coefficient for each conductor segment in a composite DC grounding electrode with multiple injection points. The effectiveness is verified by comparing with the experimental data. Finally, the dynamic flow process, temperature rise process and their mutual influence are quantitatively analyzed.
doi_str_mv 10.1007/s00202-024-02395-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121576802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121576802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c959701c0a6de002839aa18ef36159aa5d626fedf6ebd516b56ccbd536973be03</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yWmAN2nDjJiCoKSJVYYLYc-6V1ldjFdoZu_Qf-kC_BJZXYGCxfPd97n3wQuqXknhJSPQRCcpJnJC_SYU2Z1WdoRguWRkVdnaMZaYo6q5qcXqKrELaEEFY2xQwdlsaaCBh6GMBGrPdWDkbhwWnoseuwUyAtXns3Wm3s-mhU0adXrDbSSxXBmxCNCriVATR2Fivj1Wgillaf7EZ9H77iBvwge9wZ6DVWbtz1qfAaXXSyD3BzuufoY_n0vnjJVm_Pr4vHVabyisRMNWVTEaqI5BrSZ2vWSElr6BinZZKl5jnvQHccWl1S3pZcqaQYbyrWAmFzdDf17rz7HCFEsXWjt2mlYDSnZcXrRG6O8smlvAvBQyd23gzS7wUl4khaTKRFIi1-SYs6hdgUCsls1-D_qv9J_QAQw4Sy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121576802</pqid></control><display><type>article</type><title>Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jingli ; Li, Chuanju ; Zhu, Zizhuo ; Liu, Luyao ; Wang, Leilei ; Yuan, Hao ; Ren, Junyue</creator><creatorcontrib>Li, Jingli ; Li, Chuanju ; Zhu, Zizhuo ; Liu, Luyao ; Wang, Leilei ; Yuan, Hao ; Ren, Junyue</creatorcontrib><description>Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected DC projects. The paper proposes a dynamic finite element model of ocean grounding electrode characteristics based on the coupling of circuits and electrical–thermal fields. In the finite element model, soil parameters can be controlled by the time-varying temperature distribution, and the dynamic process of the coupling of soil electrical and thermal fields in the process of direct flow can be accurately simulated. A time-varying equivalent circuit model for controlling the electric–thermal field can be implemented to accurately simulate the dynamic process of the shunt coefficient for each conductor segment in a composite DC grounding electrode with multiple injection points. The effectiveness is verified by comparing with the experimental data. Finally, the dynamic flow process, temperature rise process and their mutual influence are quantitatively analyzed.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-024-02395-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coupling ; Direct current ; Dynamic models ; Economics and Management ; Electrical Engineering ; Electrical grounding ; Electrical Machines and Networks ; Electrodes ; Energy Policy ; Engineering ; Equivalent circuits ; Finite element method ; Offshore energy sources ; Offshore structures ; Original Paper ; Parameters ; Power Electronics ; Seawater ; Soil structure ; Temperature distribution ; Thermodynamic properties ; Wind effects ; Wind power</subject><ispartof>Electrical engineering, 2024, Vol.106 (5), p.6533-6546</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c959701c0a6de002839aa18ef36159aa5d626fedf6ebd516b56ccbd536973be03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-024-02395-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-024-02395-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Jingli</creatorcontrib><creatorcontrib>Li, Chuanju</creatorcontrib><creatorcontrib>Zhu, Zizhuo</creatorcontrib><creatorcontrib>Liu, Luyao</creatorcontrib><creatorcontrib>Wang, Leilei</creatorcontrib><creatorcontrib>Yuan, Hao</creatorcontrib><creatorcontrib>Ren, Junyue</creatorcontrib><title>Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected DC projects. The paper proposes a dynamic finite element model of ocean grounding electrode characteristics based on the coupling of circuits and electrical–thermal fields. In the finite element model, soil parameters can be controlled by the time-varying temperature distribution, and the dynamic process of the coupling of soil electrical and thermal fields in the process of direct flow can be accurately simulated. A time-varying equivalent circuit model for controlling the electric–thermal field can be implemented to accurately simulate the dynamic process of the shunt coefficient for each conductor segment in a composite DC grounding electrode with multiple injection points. The effectiveness is verified by comparing with the experimental data. Finally, the dynamic flow process, temperature rise process and their mutual influence are quantitatively analyzed.</description><subject>Coupling</subject><subject>Direct current</subject><subject>Dynamic models</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical grounding</subject><subject>Electrical Machines and Networks</subject><subject>Electrodes</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Equivalent circuits</subject><subject>Finite element method</subject><subject>Offshore energy sources</subject><subject>Offshore structures</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Power Electronics</subject><subject>Seawater</subject><subject>Soil structure</subject><subject>Temperature distribution</subject><subject>Thermodynamic properties</subject><subject>Wind effects</subject><subject>Wind power</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwA0yWmAN2nDjJiCoKSJVYYLYc-6V1ldjFdoZu_Qf-kC_BJZXYGCxfPd97n3wQuqXknhJSPQRCcpJnJC_SYU2Z1WdoRguWRkVdnaMZaYo6q5qcXqKrELaEEFY2xQwdlsaaCBh6GMBGrPdWDkbhwWnoseuwUyAtXns3Wm3s-mhU0adXrDbSSxXBmxCNCriVATR2Fivj1Wgillaf7EZ9H77iBvwge9wZ6DVWbtz1qfAaXXSyD3BzuufoY_n0vnjJVm_Pr4vHVabyisRMNWVTEaqI5BrSZ2vWSElr6BinZZKl5jnvQHccWl1S3pZcqaQYbyrWAmFzdDf17rz7HCFEsXWjt2mlYDSnZcXrRG6O8smlvAvBQyd23gzS7wUl4khaTKRFIi1-SYs6hdgUCsls1-D_qv9J_QAQw4Sy</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Jingli</creator><creator>Li, Chuanju</creator><creator>Zhu, Zizhuo</creator><creator>Liu, Luyao</creator><creator>Wang, Leilei</creator><creator>Yuan, Hao</creator><creator>Ren, Junyue</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling</title><author>Li, Jingli ; Li, Chuanju ; Zhu, Zizhuo ; Liu, Luyao ; Wang, Leilei ; Yuan, Hao ; Ren, Junyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c959701c0a6de002839aa18ef36159aa5d626fedf6ebd516b56ccbd536973be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coupling</topic><topic>Direct current</topic><topic>Dynamic models</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical grounding</topic><topic>Electrical Machines and Networks</topic><topic>Electrodes</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Equivalent circuits</topic><topic>Finite element method</topic><topic>Offshore energy sources</topic><topic>Offshore structures</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Power Electronics</topic><topic>Seawater</topic><topic>Soil structure</topic><topic>Temperature distribution</topic><topic>Thermodynamic properties</topic><topic>Wind effects</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingli</creatorcontrib><creatorcontrib>Li, Chuanju</creatorcontrib><creatorcontrib>Zhu, Zizhuo</creatorcontrib><creatorcontrib>Liu, Luyao</creatorcontrib><creatorcontrib>Wang, Leilei</creatorcontrib><creatorcontrib>Yuan, Hao</creatorcontrib><creatorcontrib>Ren, Junyue</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingli</au><au>Li, Chuanju</au><au>Zhu, Zizhuo</au><au>Liu, Luyao</au><au>Wang, Leilei</au><au>Yuan, Hao</au><au>Ren, Junyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2024</date><risdate>2024</risdate><volume>106</volume><issue>5</issue><spage>6533</spage><epage>6546</epage><pages>6533-6546</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>Considering the unique soil structure and the temperature rise effect of seawater’s electrical and thermal parameters, accurately simulating the grounding characteristics of marine DC grounding electrodes is the basis for ensuring the safe and stable operation of offshore wind power grid-connected DC projects. The paper proposes a dynamic finite element model of ocean grounding electrode characteristics based on the coupling of circuits and electrical–thermal fields. In the finite element model, soil parameters can be controlled by the time-varying temperature distribution, and the dynamic process of the coupling of soil electrical and thermal fields in the process of direct flow can be accurately simulated. A time-varying equivalent circuit model for controlling the electric–thermal field can be implemented to accurately simulate the dynamic process of the shunt coefficient for each conductor segment in a composite DC grounding electrode with multiple injection points. The effectiveness is verified by comparing with the experimental data. Finally, the dynamic flow process, temperature rise process and their mutual influence are quantitatively analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-024-02395-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0948-7921
ispartof Electrical engineering, 2024, Vol.106 (5), p.6533-6546
issn 0948-7921
1432-0487
language eng
recordid cdi_proquest_journals_3121576802
source SpringerLink Journals - AutoHoldings
subjects Coupling
Direct current
Dynamic models
Economics and Management
Electrical Engineering
Electrical grounding
Electrical Machines and Networks
Electrodes
Energy Policy
Engineering
Equivalent circuits
Finite element method
Offshore energy sources
Offshore structures
Original Paper
Parameters
Power Electronics
Seawater
Soil structure
Temperature distribution
Thermodynamic properties
Wind effects
Wind power
title Finite element dynamic model of ocean grounding electrode characteristics based on circuit and electric–thermal field coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20dynamic%20model%20of%20ocean%20grounding%20electrode%20characteristics%20based%20on%20circuit%20and%20electric%E2%80%93thermal%20field%20coupling&rft.jtitle=Electrical%20engineering&rft.au=Li,%20Jingli&rft.date=2024&rft.volume=106&rft.issue=5&rft.spage=6533&rft.epage=6546&rft.pages=6533-6546&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-024-02395-8&rft_dat=%3Cproquest_cross%3E3121576802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121576802&rft_id=info:pmid/&rfr_iscdi=true