Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells

High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2024-10, Vol.17 (21), p.8402-8412
Hauptverfasser: Liu, Cong, Gong, Anweng, Chen, Zuo, Liu, Tao, Liang, Xiaoyang, Ren, Donglou, Shen, Kai, Zheng, Jianzha, Xue, Qifan, Li, Zhiqiang, Schropp, Ruud E I, Zou, Bingsuo, Mai, Yaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8412
container_issue 21
container_start_page 8402
container_title Energy & environmental science
container_volume 17
creator Liu, Cong
Gong, Anweng
Chen, Zuo
Liu, Tao
Liang, Xiaoyang
Ren, Donglou
Shen, Kai
Zheng, Jianzha
Xue, Qifan
Li, Zhiqiang
Schropp, Ruud E I
Zou, Bingsuo
Mai, Yaohua
description High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadmium sulfide (CdS) films. In addition, Li-ions have high mobility, which enhances in situ diffusion into the Sb2(S,Se)3 absorber layer during subsequent hydrothermal deposition. Li effectively passivates selenium vacancies (VSe) and antimony anti-site (SbS) defects through the formation of Li–S(e) bonds. This lithiation process not only realizes a twofold optimization of the CdS buffer layer and the Sb2(S,Se)3 absorber layer, but also yields a favorable energy level arrangement and a wider depletion region at the CdS/Sb2(S,Se)3 heterojunction. By this way, we have achieved a champion PCE of 10.76% compared to a certified value of 10.50% for Sb2(S,Se)3 solar cells, which is the highest certified efficiency reported for Sb-based solar cells so far. This study provides a convenient method to optimize dual functional layers and heterojunctions for high-performance Sb2(S,Se)3 solar cells.
doi_str_mv 10.1039/d4ee03135k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121574743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121574743</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-96a7589d946664401bd1de49c3c4185b86578d9011f1cc215cef411f7faecfb3</originalsourceid><addsrcrecordid>eNo1TU1LAzEUDKJgrV78BQEvCq7mbbLJ5iilWqHgob2XbPLSpi7ZuskK-utdrJ5m3ny8IeQa2AMwrh-dQGQcePV-QiagKlFUisnTfy51eU4uUtozJkum9IR8LzBj3-2HaHPoIm1D3gXzSzFuQ0TsQ9xSEx11wfshjU4Rohssjgp6tJkeTErh81jyXU93Ybtrvyh6H2zAmOmqKW9X9yu84zR1rempxbZNl-TMmzbh1R9Oyfp5vp4tiuXby-vsaVkcAHgutDSqqrXTQkopBIPGgUOhLbcC6qqpZaVqpxmAB2tLqCx6MR7KG7S-4VNyc3x76LuPAVPe7Luhj-PihsMYV0IJzn8AvVZf_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121574743</pqid></control><display><type>article</type><title>Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Cong ; Gong, Anweng ; Chen, Zuo ; Liu, Tao ; Liang, Xiaoyang ; Ren, Donglou ; Shen, Kai ; Zheng, Jianzha ; Xue, Qifan ; Li, Zhiqiang ; Schropp, Ruud E I ; Zou, Bingsuo ; Mai, Yaohua</creator><creatorcontrib>Liu, Cong ; Gong, Anweng ; Chen, Zuo ; Liu, Tao ; Liang, Xiaoyang ; Ren, Donglou ; Shen, Kai ; Zheng, Jianzha ; Xue, Qifan ; Li, Zhiqiang ; Schropp, Ruud E I ; Zou, Bingsuo ; Mai, Yaohua</creatorcontrib><description>High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadmium sulfide (CdS) films. In addition, Li-ions have high mobility, which enhances in situ diffusion into the Sb2(S,Se)3 absorber layer during subsequent hydrothermal deposition. Li effectively passivates selenium vacancies (VSe) and antimony anti-site (SbS) defects through the formation of Li–S(e) bonds. This lithiation process not only realizes a twofold optimization of the CdS buffer layer and the Sb2(S,Se)3 absorber layer, but also yields a favorable energy level arrangement and a wider depletion region at the CdS/Sb2(S,Se)3 heterojunction. By this way, we have achieved a champion PCE of 10.76% compared to a certified value of 10.50% for Sb2(S,Se)3 solar cells, which is the highest certified efficiency reported for Sb-based solar cells so far. This study provides a convenient method to optimize dual functional layers and heterojunctions for high-performance Sb2(S,Se)3 solar cells.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee03135k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorbers ; Antimony ; Buffer layers ; Cadmium ; Cadmium sulfide ; Defects ; Diffusion layers ; Energy conversion efficiency ; Energy levels ; Heterojunctions ; Lithium ; Lithium fluoride ; Lithium ions ; Photovoltaic cells ; Physical characteristics ; Selenium ; Solar cells</subject><ispartof>Energy &amp; environmental science, 2024-10, Vol.17 (21), p.8402-8412</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Gong, Anweng</creatorcontrib><creatorcontrib>Chen, Zuo</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Liang, Xiaoyang</creatorcontrib><creatorcontrib>Ren, Donglou</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Zheng, Jianzha</creatorcontrib><creatorcontrib>Xue, Qifan</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Schropp, Ruud E I</creatorcontrib><creatorcontrib>Zou, Bingsuo</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><title>Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells</title><title>Energy &amp; environmental science</title><description>High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadmium sulfide (CdS) films. In addition, Li-ions have high mobility, which enhances in situ diffusion into the Sb2(S,Se)3 absorber layer during subsequent hydrothermal deposition. Li effectively passivates selenium vacancies (VSe) and antimony anti-site (SbS) defects through the formation of Li–S(e) bonds. This lithiation process not only realizes a twofold optimization of the CdS buffer layer and the Sb2(S,Se)3 absorber layer, but also yields a favorable energy level arrangement and a wider depletion region at the CdS/Sb2(S,Se)3 heterojunction. By this way, we have achieved a champion PCE of 10.76% compared to a certified value of 10.50% for Sb2(S,Se)3 solar cells, which is the highest certified efficiency reported for Sb-based solar cells so far. This study provides a convenient method to optimize dual functional layers and heterojunctions for high-performance Sb2(S,Se)3 solar cells.</description><subject>Absorbers</subject><subject>Antimony</subject><subject>Buffer layers</subject><subject>Cadmium</subject><subject>Cadmium sulfide</subject><subject>Defects</subject><subject>Diffusion layers</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Heterojunctions</subject><subject>Lithium</subject><subject>Lithium fluoride</subject><subject>Lithium ions</subject><subject>Photovoltaic cells</subject><subject>Physical characteristics</subject><subject>Selenium</subject><subject>Solar cells</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1TU1LAzEUDKJgrV78BQEvCq7mbbLJ5iilWqHgob2XbPLSpi7ZuskK-utdrJ5m3ny8IeQa2AMwrh-dQGQcePV-QiagKlFUisnTfy51eU4uUtozJkum9IR8LzBj3-2HaHPoIm1D3gXzSzFuQ0TsQ9xSEx11wfshjU4Rohssjgp6tJkeTErh81jyXU93Ybtrvyh6H2zAmOmqKW9X9yu84zR1rempxbZNl-TMmzbh1R9Oyfp5vp4tiuXby-vsaVkcAHgutDSqqrXTQkopBIPGgUOhLbcC6qqpZaVqpxmAB2tLqCx6MR7KG7S-4VNyc3x76LuPAVPe7Luhj-PihsMYV0IJzn8AvVZf_A</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Liu, Cong</creator><creator>Gong, Anweng</creator><creator>Chen, Zuo</creator><creator>Liu, Tao</creator><creator>Liang, Xiaoyang</creator><creator>Ren, Donglou</creator><creator>Shen, Kai</creator><creator>Zheng, Jianzha</creator><creator>Xue, Qifan</creator><creator>Li, Zhiqiang</creator><creator>Schropp, Ruud E I</creator><creator>Zou, Bingsuo</creator><creator>Mai, Yaohua</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20241029</creationdate><title>Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells</title><author>Liu, Cong ; Gong, Anweng ; Chen, Zuo ; Liu, Tao ; Liang, Xiaoyang ; Ren, Donglou ; Shen, Kai ; Zheng, Jianzha ; Xue, Qifan ; Li, Zhiqiang ; Schropp, Ruud E I ; Zou, Bingsuo ; Mai, Yaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-96a7589d946664401bd1de49c3c4185b86578d9011f1cc215cef411f7faecfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Antimony</topic><topic>Buffer layers</topic><topic>Cadmium</topic><topic>Cadmium sulfide</topic><topic>Defects</topic><topic>Diffusion layers</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Heterojunctions</topic><topic>Lithium</topic><topic>Lithium fluoride</topic><topic>Lithium ions</topic><topic>Photovoltaic cells</topic><topic>Physical characteristics</topic><topic>Selenium</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Gong, Anweng</creatorcontrib><creatorcontrib>Chen, Zuo</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Liang, Xiaoyang</creatorcontrib><creatorcontrib>Ren, Donglou</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Zheng, Jianzha</creatorcontrib><creatorcontrib>Xue, Qifan</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Schropp, Ruud E I</creatorcontrib><creatorcontrib>Zou, Bingsuo</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cong</au><au>Gong, Anweng</au><au>Chen, Zuo</au><au>Liu, Tao</au><au>Liang, Xiaoyang</au><au>Ren, Donglou</au><au>Shen, Kai</au><au>Zheng, Jianzha</au><au>Xue, Qifan</au><au>Li, Zhiqiang</au><au>Schropp, Ruud E I</au><au>Zou, Bingsuo</au><au>Mai, Yaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2024-10-29</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>8402</spage><epage>8412</epage><pages>8402-8412</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadmium sulfide (CdS) films. In addition, Li-ions have high mobility, which enhances in situ diffusion into the Sb2(S,Se)3 absorber layer during subsequent hydrothermal deposition. Li effectively passivates selenium vacancies (VSe) and antimony anti-site (SbS) defects through the formation of Li–S(e) bonds. This lithiation process not only realizes a twofold optimization of the CdS buffer layer and the Sb2(S,Se)3 absorber layer, but also yields a favorable energy level arrangement and a wider depletion region at the CdS/Sb2(S,Se)3 heterojunction. By this way, we have achieved a champion PCE of 10.76% compared to a certified value of 10.50% for Sb2(S,Se)3 solar cells, which is the highest certified efficiency reported for Sb-based solar cells so far. This study provides a convenient method to optimize dual functional layers and heterojunctions for high-performance Sb2(S,Se)3 solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee03135k</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-10, Vol.17 (21), p.8402-8412
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_3121574743
source Royal Society Of Chemistry Journals 2008-
subjects Absorbers
Antimony
Buffer layers
Cadmium
Cadmium sulfide
Defects
Diffusion layers
Energy conversion efficiency
Energy levels
Heterojunctions
Lithium
Lithium fluoride
Lithium ions
Photovoltaic cells
Physical characteristics
Selenium
Solar cells
title Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterojunction%20lithiation%20engineering%20and%20diffusion-induced%20defect%20passivation%20for%20highly%20efficient%20Sb2(S,Se)3%20solar%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Liu,%20Cong&rft.date=2024-10-29&rft.volume=17&rft.issue=21&rft.spage=8402&rft.epage=8412&rft.pages=8402-8412&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee03135k&rft_dat=%3Cproquest%3E3121574743%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121574743&rft_id=info:pmid/&rfr_iscdi=true