Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells
High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadm...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2024-10, Vol.17 (21), p.8402-8412 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8412 |
---|---|
container_issue | 21 |
container_start_page | 8402 |
container_title | Energy & environmental science |
container_volume | 17 |
creator | Liu, Cong Gong, Anweng Chen, Zuo Liu, Tao Liang, Xiaoyang Ren, Donglou Shen, Kai Zheng, Jianzha Xue, Qifan Li, Zhiqiang Schropp, Ruud E I Zou, Bingsuo Mai, Yaohua |
description | High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadmium sulfide (CdS) films. In addition, Li-ions have high mobility, which enhances in situ diffusion into the Sb2(S,Se)3 absorber layer during subsequent hydrothermal deposition. Li effectively passivates selenium vacancies (VSe) and antimony anti-site (SbS) defects through the formation of Li–S(e) bonds. This lithiation process not only realizes a twofold optimization of the CdS buffer layer and the Sb2(S,Se)3 absorber layer, but also yields a favorable energy level arrangement and a wider depletion region at the CdS/Sb2(S,Se)3 heterojunction. By this way, we have achieved a champion PCE of 10.76% compared to a certified value of 10.50% for Sb2(S,Se)3 solar cells, which is the highest certified efficiency reported for Sb-based solar cells so far. This study provides a convenient method to optimize dual functional layers and heterojunctions for high-performance Sb2(S,Se)3 solar cells. |
doi_str_mv | 10.1039/d4ee03135k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121574743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121574743</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-96a7589d946664401bd1de49c3c4185b86578d9011f1cc215cef411f7faecfb3</originalsourceid><addsrcrecordid>eNo1TU1LAzEUDKJgrV78BQEvCq7mbbLJ5iilWqHgob2XbPLSpi7ZuskK-utdrJ5m3ny8IeQa2AMwrh-dQGQcePV-QiagKlFUisnTfy51eU4uUtozJkum9IR8LzBj3-2HaHPoIm1D3gXzSzFuQ0TsQ9xSEx11wfshjU4Rohssjgp6tJkeTErh81jyXU93Ybtrvyh6H2zAmOmqKW9X9yu84zR1rempxbZNl-TMmzbh1R9Oyfp5vp4tiuXby-vsaVkcAHgutDSqqrXTQkopBIPGgUOhLbcC6qqpZaVqpxmAB2tLqCx6MR7KG7S-4VNyc3x76LuPAVPe7Luhj-PihsMYV0IJzn8AvVZf_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121574743</pqid></control><display><type>article</type><title>Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Cong ; Gong, Anweng ; Chen, Zuo ; Liu, Tao ; Liang, Xiaoyang ; Ren, Donglou ; Shen, Kai ; Zheng, Jianzha ; Xue, Qifan ; Li, Zhiqiang ; Schropp, Ruud E I ; Zou, Bingsuo ; Mai, Yaohua</creator><creatorcontrib>Liu, Cong ; Gong, Anweng ; Chen, Zuo ; Liu, Tao ; Liang, Xiaoyang ; Ren, Donglou ; Shen, Kai ; Zheng, Jianzha ; Xue, Qifan ; Li, Zhiqiang ; Schropp, Ruud E I ; Zou, Bingsuo ; Mai, Yaohua</creatorcontrib><description>High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadmium sulfide (CdS) films. In addition, Li-ions have high mobility, which enhances in situ diffusion into the Sb2(S,Se)3 absorber layer during subsequent hydrothermal deposition. Li effectively passivates selenium vacancies (VSe) and antimony anti-site (SbS) defects through the formation of Li–S(e) bonds. This lithiation process not only realizes a twofold optimization of the CdS buffer layer and the Sb2(S,Se)3 absorber layer, but also yields a favorable energy level arrangement and a wider depletion region at the CdS/Sb2(S,Se)3 heterojunction. By this way, we have achieved a champion PCE of 10.76% compared to a certified value of 10.50% for Sb2(S,Se)3 solar cells, which is the highest certified efficiency reported for Sb-based solar cells so far. This study provides a convenient method to optimize dual functional layers and heterojunctions for high-performance Sb2(S,Se)3 solar cells.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee03135k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorbers ; Antimony ; Buffer layers ; Cadmium ; Cadmium sulfide ; Defects ; Diffusion layers ; Energy conversion efficiency ; Energy levels ; Heterojunctions ; Lithium ; Lithium fluoride ; Lithium ions ; Photovoltaic cells ; Physical characteristics ; Selenium ; Solar cells</subject><ispartof>Energy & environmental science, 2024-10, Vol.17 (21), p.8402-8412</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Gong, Anweng</creatorcontrib><creatorcontrib>Chen, Zuo</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Liang, Xiaoyang</creatorcontrib><creatorcontrib>Ren, Donglou</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Zheng, Jianzha</creatorcontrib><creatorcontrib>Xue, Qifan</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Schropp, Ruud E I</creatorcontrib><creatorcontrib>Zou, Bingsuo</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><title>Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells</title><title>Energy & environmental science</title><description>High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadmium sulfide (CdS) films. In addition, Li-ions have high mobility, which enhances in situ diffusion into the Sb2(S,Se)3 absorber layer during subsequent hydrothermal deposition. Li effectively passivates selenium vacancies (VSe) and antimony anti-site (SbS) defects through the formation of Li–S(e) bonds. This lithiation process not only realizes a twofold optimization of the CdS buffer layer and the Sb2(S,Se)3 absorber layer, but also yields a favorable energy level arrangement and a wider depletion region at the CdS/Sb2(S,Se)3 heterojunction. By this way, we have achieved a champion PCE of 10.76% compared to a certified value of 10.50% for Sb2(S,Se)3 solar cells, which is the highest certified efficiency reported for Sb-based solar cells so far. This study provides a convenient method to optimize dual functional layers and heterojunctions for high-performance Sb2(S,Se)3 solar cells.</description><subject>Absorbers</subject><subject>Antimony</subject><subject>Buffer layers</subject><subject>Cadmium</subject><subject>Cadmium sulfide</subject><subject>Defects</subject><subject>Diffusion layers</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Heterojunctions</subject><subject>Lithium</subject><subject>Lithium fluoride</subject><subject>Lithium ions</subject><subject>Photovoltaic cells</subject><subject>Physical characteristics</subject><subject>Selenium</subject><subject>Solar cells</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1TU1LAzEUDKJgrV78BQEvCq7mbbLJ5iilWqHgob2XbPLSpi7ZuskK-utdrJ5m3ny8IeQa2AMwrh-dQGQcePV-QiagKlFUisnTfy51eU4uUtozJkum9IR8LzBj3-2HaHPoIm1D3gXzSzFuQ0TsQ9xSEx11wfshjU4Rohssjgp6tJkeTErh81jyXU93Ybtrvyh6H2zAmOmqKW9X9yu84zR1rempxbZNl-TMmzbh1R9Oyfp5vp4tiuXby-vsaVkcAHgutDSqqrXTQkopBIPGgUOhLbcC6qqpZaVqpxmAB2tLqCx6MR7KG7S-4VNyc3x76LuPAVPe7Luhj-PihsMYV0IJzn8AvVZf_A</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Liu, Cong</creator><creator>Gong, Anweng</creator><creator>Chen, Zuo</creator><creator>Liu, Tao</creator><creator>Liang, Xiaoyang</creator><creator>Ren, Donglou</creator><creator>Shen, Kai</creator><creator>Zheng, Jianzha</creator><creator>Xue, Qifan</creator><creator>Li, Zhiqiang</creator><creator>Schropp, Ruud E I</creator><creator>Zou, Bingsuo</creator><creator>Mai, Yaohua</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20241029</creationdate><title>Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells</title><author>Liu, Cong ; Gong, Anweng ; Chen, Zuo ; Liu, Tao ; Liang, Xiaoyang ; Ren, Donglou ; Shen, Kai ; Zheng, Jianzha ; Xue, Qifan ; Li, Zhiqiang ; Schropp, Ruud E I ; Zou, Bingsuo ; Mai, Yaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-96a7589d946664401bd1de49c3c4185b86578d9011f1cc215cef411f7faecfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorbers</topic><topic>Antimony</topic><topic>Buffer layers</topic><topic>Cadmium</topic><topic>Cadmium sulfide</topic><topic>Defects</topic><topic>Diffusion layers</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Heterojunctions</topic><topic>Lithium</topic><topic>Lithium fluoride</topic><topic>Lithium ions</topic><topic>Photovoltaic cells</topic><topic>Physical characteristics</topic><topic>Selenium</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Gong, Anweng</creatorcontrib><creatorcontrib>Chen, Zuo</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Liang, Xiaoyang</creatorcontrib><creatorcontrib>Ren, Donglou</creatorcontrib><creatorcontrib>Shen, Kai</creatorcontrib><creatorcontrib>Zheng, Jianzha</creatorcontrib><creatorcontrib>Xue, Qifan</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Schropp, Ruud E I</creatorcontrib><creatorcontrib>Zou, Bingsuo</creatorcontrib><creatorcontrib>Mai, Yaohua</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cong</au><au>Gong, Anweng</au><au>Chen, Zuo</au><au>Liu, Tao</au><au>Liang, Xiaoyang</au><au>Ren, Donglou</au><au>Shen, Kai</au><au>Zheng, Jianzha</au><au>Xue, Qifan</au><au>Li, Zhiqiang</au><au>Schropp, Ruud E I</au><au>Zou, Bingsuo</au><au>Mai, Yaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells</atitle><jtitle>Energy & environmental science</jtitle><date>2024-10-29</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>8402</spage><epage>8412</epage><pages>8402-8412</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>High-quality heterojunctions are crucial for achieving high power conversion efficiency (PCE) in the antimony selenosulfide (Sb2(S,Se)3) solar cells. Here, we introduce lithium fluoride (LiF) doping of the precursor solution to improve the conductivity, morphology, and n-type characteristics of cadmium sulfide (CdS) films. In addition, Li-ions have high mobility, which enhances in situ diffusion into the Sb2(S,Se)3 absorber layer during subsequent hydrothermal deposition. Li effectively passivates selenium vacancies (VSe) and antimony anti-site (SbS) defects through the formation of Li–S(e) bonds. This lithiation process not only realizes a twofold optimization of the CdS buffer layer and the Sb2(S,Se)3 absorber layer, but also yields a favorable energy level arrangement and a wider depletion region at the CdS/Sb2(S,Se)3 heterojunction. By this way, we have achieved a champion PCE of 10.76% compared to a certified value of 10.50% for Sb2(S,Se)3 solar cells, which is the highest certified efficiency reported for Sb-based solar cells so far. This study provides a convenient method to optimize dual functional layers and heterojunctions for high-performance Sb2(S,Se)3 solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee03135k</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2024-10, Vol.17 (21), p.8402-8412 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_3121574743 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Absorbers Antimony Buffer layers Cadmium Cadmium sulfide Defects Diffusion layers Energy conversion efficiency Energy levels Heterojunctions Lithium Lithium fluoride Lithium ions Photovoltaic cells Physical characteristics Selenium Solar cells |
title | Heterojunction lithiation engineering and diffusion-induced defect passivation for highly efficient Sb2(S,Se)3 solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterojunction%20lithiation%20engineering%20and%20diffusion-induced%20defect%20passivation%20for%20highly%20efficient%20Sb2(S,Se)3%20solar%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Liu,%20Cong&rft.date=2024-10-29&rft.volume=17&rft.issue=21&rft.spage=8402&rft.epage=8412&rft.pages=8402-8412&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee03135k&rft_dat=%3Cproquest%3E3121574743%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121574743&rft_id=info:pmid/&rfr_iscdi=true |