Toward gradient bandit-based selection of candidate architectures in AutoGAN

The neural architecture search (NAS) method provides a new approach to the design of generative adversarial network (GAN)’s architecture. The existing state-of-the-art algorithm, AutoGAN, is an example in discovering GAN’s architecture using reinforcement learning (RL)-based NAS. However, performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2021-03, Vol.25 (6), p.4367-4378
Hauptverfasser: Fan, Yi, Zhou, Guoqiang, Shen, Jun, Dai, Guilan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4378
container_issue 6
container_start_page 4367
container_title Soft computing (Berlin, Germany)
container_volume 25
creator Fan, Yi
Zhou, Guoqiang
Shen, Jun
Dai, Guilan
description The neural architecture search (NAS) method provides a new approach to the design of generative adversarial network (GAN)’s architecture. The existing state-of-the-art algorithm, AutoGAN, is an example in discovering GAN’s architecture using reinforcement learning (RL)-based NAS. However, performance differences between the candidate architectures are not taken into consideration. In this paper, one new ImprovedAutoGAN algorithm based on AutoGAN is proposed. We found that which candidate architectures to use can affect the performance of the final network. So in the process of architecture search, compared with AutoGAN, in which candidate architectures are selected randomly, our method uses gradient bandit algorithm to increase the probability of selecting networks with better performance. This paper also introduces a temperature coefficient in the algorithm to prevent the search results from getting trapped in the local optimum. The GANs are searched using the same search space as AutoGAN, and the discovered GAN has a Frechet inception distance (FID) score of 11.60 on CIFAR-10, reaching the best level in the current RL-based NAS methods. Experiments also show that the transferability of this GAN is satisfying.
doi_str_mv 10.1007/s00500-020-05446-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121499721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121499721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c808038a3a2fc6ac92ec6a4d564eb49a6052da4b6fe15f9cc9dfde9653d309323</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3TyZ7PNsRStQtFLPYdskq1b6qYmWazf3tgVvHkY3sB7bwZ-CF1TuKUA9V0CqAAIsDKVEJIcTtCECs5JLWp1etwZqaXg5-gipS0Ao3XFJ2i1Dp8mOryJxnW-z7gxvesyaUzyDie_8zZ3ocehxfbHcSZ7bKJ963JxhugT7no8H3JYzp8v0Vlrdslf_eoUvT7crxePZPWyfFrMV8RyqjKxM5gBnxluWGulsYr5IsJVUvhGKCOhYs6IRraeVq2yVrnWeSUr7jgozvgU3Yx39zF8DD5lvQ1D7MtLzSmjQqma0ZJiY8rGkFL0rd7H7t3EL01B_1DTIzVdqOkjNX0oJT6WUgn3Gx__Tv_T-gaNUnBx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121499721</pqid></control><display><type>article</type><title>Toward gradient bandit-based selection of candidate architectures in AutoGAN</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Fan, Yi ; Zhou, Guoqiang ; Shen, Jun ; Dai, Guilan</creator><creatorcontrib>Fan, Yi ; Zhou, Guoqiang ; Shen, Jun ; Dai, Guilan</creatorcontrib><description>The neural architecture search (NAS) method provides a new approach to the design of generative adversarial network (GAN)’s architecture. The existing state-of-the-art algorithm, AutoGAN, is an example in discovering GAN’s architecture using reinforcement learning (RL)-based NAS. However, performance differences between the candidate architectures are not taken into consideration. In this paper, one new ImprovedAutoGAN algorithm based on AutoGAN is proposed. We found that which candidate architectures to use can affect the performance of the final network. So in the process of architecture search, compared with AutoGAN, in which candidate architectures are selected randomly, our method uses gradient bandit algorithm to increase the probability of selecting networks with better performance. This paper also introduces a temperature coefficient in the algorithm to prevent the search results from getting trapped in the local optimum. The GANs are searched using the same search space as AutoGAN, and the discovered GAN has a Frechet inception distance (FID) score of 11.60 on CIFAR-10, reaching the best level in the current RL-based NAS methods. Experiments also show that the transferability of this GAN is satisfying.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-020-05446-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Control ; Engineering ; Generative adversarial networks ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Methodologies and Application ; Methods ; Neural networks ; Robotics ; Searching</subject><ispartof>Soft computing (Berlin, Germany), 2021-03, Vol.25 (6), p.4367-4378</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c808038a3a2fc6ac92ec6a4d564eb49a6052da4b6fe15f9cc9dfde9653d309323</citedby><cites>FETCH-LOGICAL-c319t-c808038a3a2fc6ac92ec6a4d564eb49a6052da4b6fe15f9cc9dfde9653d309323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-020-05446-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3121499721?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Zhou, Guoqiang</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Dai, Guilan</creatorcontrib><title>Toward gradient bandit-based selection of candidate architectures in AutoGAN</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The neural architecture search (NAS) method provides a new approach to the design of generative adversarial network (GAN)’s architecture. The existing state-of-the-art algorithm, AutoGAN, is an example in discovering GAN’s architecture using reinforcement learning (RL)-based NAS. However, performance differences between the candidate architectures are not taken into consideration. In this paper, one new ImprovedAutoGAN algorithm based on AutoGAN is proposed. We found that which candidate architectures to use can affect the performance of the final network. So in the process of architecture search, compared with AutoGAN, in which candidate architectures are selected randomly, our method uses gradient bandit algorithm to increase the probability of selecting networks with better performance. This paper also introduces a temperature coefficient in the algorithm to prevent the search results from getting trapped in the local optimum. The GANs are searched using the same search space as AutoGAN, and the discovered GAN has a Frechet inception distance (FID) score of 11.60 on CIFAR-10, reaching the best level in the current RL-based NAS methods. Experiments also show that the transferability of this GAN is satisfying.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Generative adversarial networks</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Methodologies and Application</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Robotics</subject><subject>Searching</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3TyZ7PNsRStQtFLPYdskq1b6qYmWazf3tgVvHkY3sB7bwZ-CF1TuKUA9V0CqAAIsDKVEJIcTtCECs5JLWp1etwZqaXg5-gipS0Ao3XFJ2i1Dp8mOryJxnW-z7gxvesyaUzyDie_8zZ3ocehxfbHcSZ7bKJ963JxhugT7no8H3JYzp8v0Vlrdslf_eoUvT7crxePZPWyfFrMV8RyqjKxM5gBnxluWGulsYr5IsJVUvhGKCOhYs6IRraeVq2yVrnWeSUr7jgozvgU3Yx39zF8DD5lvQ1D7MtLzSmjQqma0ZJiY8rGkFL0rd7H7t3EL01B_1DTIzVdqOkjNX0oJT6WUgn3Gx__Tv_T-gaNUnBx</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Fan, Yi</creator><creator>Zhou, Guoqiang</creator><creator>Shen, Jun</creator><creator>Dai, Guilan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Toward gradient bandit-based selection of candidate architectures in AutoGAN</title><author>Fan, Yi ; Zhou, Guoqiang ; Shen, Jun ; Dai, Guilan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c808038a3a2fc6ac92ec6a4d564eb49a6052da4b6fe15f9cc9dfde9653d309323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Generative adversarial networks</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Methodologies and Application</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Robotics</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Zhou, Guoqiang</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>Dai, Guilan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yi</au><au>Zhou, Guoqiang</au><au>Shen, Jun</au><au>Dai, Guilan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward gradient bandit-based selection of candidate architectures in AutoGAN</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>25</volume><issue>6</issue><spage>4367</spage><epage>4378</epage><pages>4367-4378</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The neural architecture search (NAS) method provides a new approach to the design of generative adversarial network (GAN)’s architecture. The existing state-of-the-art algorithm, AutoGAN, is an example in discovering GAN’s architecture using reinforcement learning (RL)-based NAS. However, performance differences between the candidate architectures are not taken into consideration. In this paper, one new ImprovedAutoGAN algorithm based on AutoGAN is proposed. We found that which candidate architectures to use can affect the performance of the final network. So in the process of architecture search, compared with AutoGAN, in which candidate architectures are selected randomly, our method uses gradient bandit algorithm to increase the probability of selecting networks with better performance. This paper also introduces a temperature coefficient in the algorithm to prevent the search results from getting trapped in the local optimum. The GANs are searched using the same search space as AutoGAN, and the discovered GAN has a Frechet inception distance (FID) score of 11.60 on CIFAR-10, reaching the best level in the current RL-based NAS methods. Experiments also show that the transferability of this GAN is satisfying.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-020-05446-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2021-03, Vol.25 (6), p.4367-4378
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_3121499721
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Computational Intelligence
Control
Engineering
Generative adversarial networks
Machine learning
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methods
Neural networks
Robotics
Searching
title Toward gradient bandit-based selection of candidate architectures in AutoGAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20gradient%20bandit-based%20selection%20of%20candidate%20architectures%20in%20AutoGAN&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Fan,%20Yi&rft.date=2021-03-01&rft.volume=25&rft.issue=6&rft.spage=4367&rft.epage=4378&rft.pages=4367-4378&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-020-05446-x&rft_dat=%3Cproquest_cross%3E3121499721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121499721&rft_id=info:pmid/&rfr_iscdi=true