On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets
This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fr...
Gespeichert in:
Veröffentlicht in: | Computational economics 2024-09, Vol.64 (3), p.1463-1488 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1488 |
---|---|
container_issue | 3 |
container_start_page | 1463 |
container_title | Computational economics |
container_volume | 64 |
creator | Banihashemi, S. Ghasemifard, A. Babaei, A. |
description | This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fractional Black-Scholes (BS) equation arising from the CEV model with fBm. To solve this equation numerically, we apply a Chebyshev collocation method and analyze its convergence properties. We demonstrate the effectiveness of the numerical method with an example and apply it to the option pricing problem. |
doi_str_mv | 10.1007/s10614-023-10482-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121467454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121467454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-974f127f485b76e92b905c75d84edcc240c25c1bfd56a7672fb7ee7d380324da3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Bz9GXNGlab-uyq8JqBf9cPIQ0Tbddu-1u0iJ-e1srePP0eMxvhmEQOqdwSQHklacQUk6ABYQCjxjhB2hChWQkjiU_RBOImSQS4vgYnXi_AQBBGZug96TGbWHxY7e1rjS6wsmuLZsaP_VfWa_xg22LJvPXeOm0GZQeuam0-SDPpmgq6_Fi3-lB8PizbAs8X7zhmfe29afoKNeVt2e_d4pel4uX-R1ZJbf389mKGCahJX3BnDKZ80ikMrQxS2MQRoos4jYzhnEwTBia5pkItQwly1NprcyCCALGMx1M0cWYu3PNvrO-VZumc31RrwLKKA8lF7yn2EgZ13jvbK52rtxq96UoqGFENY6o-hHVz4hqMAWjyfdwvbbuL_of1ze3FnPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121467454</pqid></control><display><type>article</type><title>On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Banihashemi, S. ; Ghasemifard, A. ; Babaei, A.</creator><creatorcontrib>Banihashemi, S. ; Ghasemifard, A. ; Babaei, A.</creatorcontrib><description>This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fractional Black-Scholes (BS) equation arising from the CEV model with fBm. To solve this equation numerically, we apply a Chebyshev collocation method and analyze its convergence properties. We demonstrate the effectiveness of the numerical method with an example and apply it to the option pricing problem.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-023-10482-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Behavioral/Experimental Economics ; Black-Scholes equation ; Brownian motion ; Chebyshev approximation ; Collocation methods ; Computer Appl. in Social and Behavioral Sciences ; Convergence ; Derivatives ; Drift estimation ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Elasticity ; Interest rates ; Math Applications in Computer Science ; Methods ; Numerical analysis ; Numerical methods ; Operations Research/Decision Theory ; Parameter estimation ; Partial differential equations ; Pricing ; Rates of return ; Securities prices ; Stochastic models ; Stock prices ; Time series ; Volatility</subject><ispartof>Computational economics, 2024-09, Vol.64 (3), p.1463-1488</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-974f127f485b76e92b905c75d84edcc240c25c1bfd56a7672fb7ee7d380324da3</cites><orcidid>0000-0002-6980-9786 ; 0000-0002-4449-8109 ; 0000-0002-2591-0997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-023-10482-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-023-10482-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Banihashemi, S.</creatorcontrib><creatorcontrib>Ghasemifard, A.</creatorcontrib><creatorcontrib>Babaei, A.</creatorcontrib><title>On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fractional Black-Scholes (BS) equation arising from the CEV model with fBm. To solve this equation numerically, we apply a Chebyshev collocation method and analyze its convergence properties. We demonstrate the effectiveness of the numerical method with an example and apply it to the option pricing problem.</description><subject>Applied mathematics</subject><subject>Behavioral/Experimental Economics</subject><subject>Black-Scholes equation</subject><subject>Brownian motion</subject><subject>Chebyshev approximation</subject><subject>Collocation methods</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Drift estimation</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Elasticity</subject><subject>Interest rates</subject><subject>Math Applications in Computer Science</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Operations Research/Decision Theory</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Pricing</subject><subject>Rates of return</subject><subject>Securities prices</subject><subject>Stochastic models</subject><subject>Stock prices</subject><subject>Time series</subject><subject>Volatility</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AU8Bz9GXNGlab-uyq8JqBf9cPIQ0Tbddu-1u0iJ-e1srePP0eMxvhmEQOqdwSQHklacQUk6ABYQCjxjhB2hChWQkjiU_RBOImSQS4vgYnXi_AQBBGZug96TGbWHxY7e1rjS6wsmuLZsaP_VfWa_xg22LJvPXeOm0GZQeuam0-SDPpmgq6_Fi3-lB8PizbAs8X7zhmfe29afoKNeVt2e_d4pel4uX-R1ZJbf389mKGCahJX3BnDKZ80ikMrQxS2MQRoos4jYzhnEwTBia5pkItQwly1NprcyCCALGMx1M0cWYu3PNvrO-VZumc31RrwLKKA8lF7yn2EgZ13jvbK52rtxq96UoqGFENY6o-hHVz4hqMAWjyfdwvbbuL_of1ze3FnPs</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Banihashemi, S.</creator><creator>Ghasemifard, A.</creator><creator>Babaei, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-6980-9786</orcidid><orcidid>https://orcid.org/0000-0002-4449-8109</orcidid><orcidid>https://orcid.org/0000-0002-2591-0997</orcidid></search><sort><creationdate>20240901</creationdate><title>On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets</title><author>Banihashemi, S. ; Ghasemifard, A. ; Babaei, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-974f127f485b76e92b905c75d84edcc240c25c1bfd56a7672fb7ee7d380324da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Behavioral/Experimental Economics</topic><topic>Black-Scholes equation</topic><topic>Brownian motion</topic><topic>Chebyshev approximation</topic><topic>Collocation methods</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Drift estimation</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Elasticity</topic><topic>Interest rates</topic><topic>Math Applications in Computer Science</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Operations Research/Decision Theory</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Pricing</topic><topic>Rates of return</topic><topic>Securities prices</topic><topic>Stochastic models</topic><topic>Stock prices</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banihashemi, S.</creatorcontrib><creatorcontrib>Ghasemifard, A.</creatorcontrib><creatorcontrib>Babaei, A.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banihashemi, S.</au><au>Ghasemifard, A.</au><au>Babaei, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>64</volume><issue>3</issue><spage>1463</spage><epage>1488</epage><pages>1463-1488</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fractional Black-Scholes (BS) equation arising from the CEV model with fBm. To solve this equation numerically, we apply a Chebyshev collocation method and analyze its convergence properties. We demonstrate the effectiveness of the numerical method with an example and apply it to the option pricing problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-023-10482-4</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6980-9786</orcidid><orcidid>https://orcid.org/0000-0002-4449-8109</orcidid><orcidid>https://orcid.org/0000-0002-2591-0997</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2024-09, Vol.64 (3), p.1463-1488 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_3121467454 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied mathematics Behavioral/Experimental Economics Black-Scholes equation Brownian motion Chebyshev approximation Collocation methods Computer Appl. in Social and Behavioral Sciences Convergence Derivatives Drift estimation Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Elasticity Interest rates Math Applications in Computer Science Methods Numerical analysis Numerical methods Operations Research/Decision Theory Parameter estimation Partial differential equations Pricing Rates of return Securities prices Stochastic models Stock prices Time series Volatility |
title | On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Numerical%20Option%20Pricing%20Methods:%20Fractional%20Black-Scholes%20Equations%20with%20CEV%20Assets&rft.jtitle=Computational%20economics&rft.au=Banihashemi,%20S.&rft.date=2024-09-01&rft.volume=64&rft.issue=3&rft.spage=1463&rft.epage=1488&rft.pages=1463-1488&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-023-10482-4&rft_dat=%3Cproquest_cross%3E3121467454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121467454&rft_id=info:pmid/&rfr_iscdi=true |