On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets

This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2024-09, Vol.64 (3), p.1463-1488
Hauptverfasser: Banihashemi, S., Ghasemifard, A., Babaei, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1488
container_issue 3
container_start_page 1463
container_title Computational economics
container_volume 64
creator Banihashemi, S.
Ghasemifard, A.
Babaei, A.
description This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fractional Black-Scholes (BS) equation arising from the CEV model with fBm. To solve this equation numerically, we apply a Chebyshev collocation method and analyze its convergence properties. We demonstrate the effectiveness of the numerical method with an example and apply it to the option pricing problem.
doi_str_mv 10.1007/s10614-023-10482-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121467454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121467454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-974f127f485b76e92b905c75d84edcc240c25c1bfd56a7672fb7ee7d380324da3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Bz9GXNGlab-uyq8JqBf9cPIQ0Tbddu-1u0iJ-e1srePP0eMxvhmEQOqdwSQHklacQUk6ABYQCjxjhB2hChWQkjiU_RBOImSQS4vgYnXi_AQBBGZug96TGbWHxY7e1rjS6wsmuLZsaP_VfWa_xg22LJvPXeOm0GZQeuam0-SDPpmgq6_Fi3-lB8PizbAs8X7zhmfe29afoKNeVt2e_d4pel4uX-R1ZJbf389mKGCahJX3BnDKZ80ikMrQxS2MQRoos4jYzhnEwTBia5pkItQwly1NprcyCCALGMx1M0cWYu3PNvrO-VZumc31RrwLKKA8lF7yn2EgZ13jvbK52rtxq96UoqGFENY6o-hHVz4hqMAWjyfdwvbbuL_of1ze3FnPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121467454</pqid></control><display><type>article</type><title>On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Banihashemi, S. ; Ghasemifard, A. ; Babaei, A.</creator><creatorcontrib>Banihashemi, S. ; Ghasemifard, A. ; Babaei, A.</creatorcontrib><description>This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fractional Black-Scholes (BS) equation arising from the CEV model with fBm. To solve this equation numerically, we apply a Chebyshev collocation method and analyze its convergence properties. We demonstrate the effectiveness of the numerical method with an example and apply it to the option pricing problem.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-023-10482-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Behavioral/Experimental Economics ; Black-Scholes equation ; Brownian motion ; Chebyshev approximation ; Collocation methods ; Computer Appl. in Social and Behavioral Sciences ; Convergence ; Derivatives ; Drift estimation ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Elasticity ; Interest rates ; Math Applications in Computer Science ; Methods ; Numerical analysis ; Numerical methods ; Operations Research/Decision Theory ; Parameter estimation ; Partial differential equations ; Pricing ; Rates of return ; Securities prices ; Stochastic models ; Stock prices ; Time series ; Volatility</subject><ispartof>Computational economics, 2024-09, Vol.64 (3), p.1463-1488</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-974f127f485b76e92b905c75d84edcc240c25c1bfd56a7672fb7ee7d380324da3</cites><orcidid>0000-0002-6980-9786 ; 0000-0002-4449-8109 ; 0000-0002-2591-0997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-023-10482-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-023-10482-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Banihashemi, S.</creatorcontrib><creatorcontrib>Ghasemifard, A.</creatorcontrib><creatorcontrib>Babaei, A.</creatorcontrib><title>On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fractional Black-Scholes (BS) equation arising from the CEV model with fBm. To solve this equation numerically, we apply a Chebyshev collocation method and analyze its convergence properties. We demonstrate the effectiveness of the numerical method with an example and apply it to the option pricing problem.</description><subject>Applied mathematics</subject><subject>Behavioral/Experimental Economics</subject><subject>Black-Scholes equation</subject><subject>Brownian motion</subject><subject>Chebyshev approximation</subject><subject>Collocation methods</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Drift estimation</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Elasticity</subject><subject>Interest rates</subject><subject>Math Applications in Computer Science</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Operations Research/Decision Theory</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Pricing</subject><subject>Rates of return</subject><subject>Securities prices</subject><subject>Stochastic models</subject><subject>Stock prices</subject><subject>Time series</subject><subject>Volatility</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AU8Bz9GXNGlab-uyq8JqBf9cPIQ0Tbddu-1u0iJ-e1srePP0eMxvhmEQOqdwSQHklacQUk6ABYQCjxjhB2hChWQkjiU_RBOImSQS4vgYnXi_AQBBGZug96TGbWHxY7e1rjS6wsmuLZsaP_VfWa_xg22LJvPXeOm0GZQeuam0-SDPpmgq6_Fi3-lB8PizbAs8X7zhmfe29afoKNeVt2e_d4pel4uX-R1ZJbf389mKGCahJX3BnDKZ80ikMrQxS2MQRoos4jYzhnEwTBia5pkItQwly1NprcyCCALGMx1M0cWYu3PNvrO-VZumc31RrwLKKA8lF7yn2EgZ13jvbK52rtxq96UoqGFENY6o-hHVz4hqMAWjyfdwvbbuL_of1ze3FnPs</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Banihashemi, S.</creator><creator>Ghasemifard, A.</creator><creator>Babaei, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-6980-9786</orcidid><orcidid>https://orcid.org/0000-0002-4449-8109</orcidid><orcidid>https://orcid.org/0000-0002-2591-0997</orcidid></search><sort><creationdate>20240901</creationdate><title>On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets</title><author>Banihashemi, S. ; Ghasemifard, A. ; Babaei, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-974f127f485b76e92b905c75d84edcc240c25c1bfd56a7672fb7ee7d380324da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Behavioral/Experimental Economics</topic><topic>Black-Scholes equation</topic><topic>Brownian motion</topic><topic>Chebyshev approximation</topic><topic>Collocation methods</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Drift estimation</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Elasticity</topic><topic>Interest rates</topic><topic>Math Applications in Computer Science</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Operations Research/Decision Theory</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Pricing</topic><topic>Rates of return</topic><topic>Securities prices</topic><topic>Stochastic models</topic><topic>Stock prices</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banihashemi, S.</creatorcontrib><creatorcontrib>Ghasemifard, A.</creatorcontrib><creatorcontrib>Babaei, A.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banihashemi, S.</au><au>Ghasemifard, A.</au><au>Babaei, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>64</volume><issue>3</issue><spage>1463</spage><epage>1488</epage><pages>1463-1488</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>This article explores a stochastic volatility model that incorporates fractional Brownian motion (fBm) into the constant elasticity of variance (CEV) framework. We use time series models to estimate the drift and volatility parameters of the model and validate its performance. We also examine the fractional Black-Scholes (BS) equation arising from the CEV model with fBm. To solve this equation numerically, we apply a Chebyshev collocation method and analyze its convergence properties. We demonstrate the effectiveness of the numerical method with an example and apply it to the option pricing problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-023-10482-4</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6980-9786</orcidid><orcidid>https://orcid.org/0000-0002-4449-8109</orcidid><orcidid>https://orcid.org/0000-0002-2591-0997</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2024-09, Vol.64 (3), p.1463-1488
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_journals_3121467454
source SpringerLink Journals - AutoHoldings
subjects Applied mathematics
Behavioral/Experimental Economics
Black-Scholes equation
Brownian motion
Chebyshev approximation
Collocation methods
Computer Appl. in Social and Behavioral Sciences
Convergence
Derivatives
Drift estimation
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Elasticity
Interest rates
Math Applications in Computer Science
Methods
Numerical analysis
Numerical methods
Operations Research/Decision Theory
Parameter estimation
Partial differential equations
Pricing
Rates of return
Securities prices
Stochastic models
Stock prices
Time series
Volatility
title On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Numerical%20Option%20Pricing%20Methods:%20Fractional%20Black-Scholes%20Equations%20with%20CEV%20Assets&rft.jtitle=Computational%20economics&rft.au=Banihashemi,%20S.&rft.date=2024-09-01&rft.volume=64&rft.issue=3&rft.spage=1463&rft.epage=1488&rft.pages=1463-1488&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-023-10482-4&rft_dat=%3Cproquest_cross%3E3121467454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121467454&rft_id=info:pmid/&rfr_iscdi=true