Feedbacks From Young Permafrost Carbon Remobilization to the Deglacial Methane Rise

The abrupt warming events punctuating the Termination 1 (about 11.7–18 ka Before Present, BP) were marked by sharp rises in the concentration of atmospheric methane (CH4). The role of permafrost organic carbon (OC) in these rises is still debated, with studies based on top‐down measurements of radio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2024-10, Vol.38 (10), p.n/a
Hauptverfasser: Sabino, M., Gustafsson, Ö., Wild, B., Semiletov, I. P., Dudarev, O. V., Ingrosso, G., Tesi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Global biogeochemical cycles
container_volume 38
creator Sabino, M.
Gustafsson, Ö.
Wild, B.
Semiletov, I. P.
Dudarev, O. V.
Ingrosso, G.
Tesi, T.
description The abrupt warming events punctuating the Termination 1 (about 11.7–18 ka Before Present, BP) were marked by sharp rises in the concentration of atmospheric methane (CH4). The role of permafrost organic carbon (OC) in these rises is still debated, with studies based on top‐down measurements of radiocarbon (14C) content of CH4 trapped in ice cores suggesting minimum contributions from old and strongly 14C‐depleted permafrost OC. However, organic matter from permafrost can exhibit a continuum of 14C ages (contemporaneous to >50 ky). Here, we investigate the large‐scale permafrost remobilization at the Younger Dryas‐Preboreal transition (ca. 11.6 ka BP) using the sedimentary record deposited at the Lena River paleo‐outlet (Arctic Ocean) to reflect permafrost destabilization in this vast drainage basin. Terrestrial OC was isolated from sediments and characterized geochemically measuring δ13C, Δ14C, and lignin phenol molecular fossils. Results indicate massive remobilization of relatively young (about 2,600 years) permafrost OC from inland Siberia after abrupt warming triggered severe active layer deepening. Methane emissions from this young fraction of permafrost OC contributed to the deglacial CH4 rise. This study stresses that underestimating permafrost complexities may affect our comprehension of the deglacial permafrost OC‐climate feedback and helps understand how modern permafrost systems may react to rapid warming events, including enhanced CH4 emissions that would amplify anthropogenic climate change. Plain Language Summary Feedback on climate change through methane emissions from organic carbon (OC) released from thawing permafrost soils is still debated. Studies investigating rapid warming events from the last 15,000 years and measuring the radiocarbon content in methane from ancient air trapped in ice cores suggested small contributions from the oldest (10,000 years or more) and most refractory OC fraction to the deglacial methane rise. However, the younger and more reactive OC likely contributed more to methane emissions from permafrost systems. Using terrestrial material from sediments deposited at the paleo‐delta of the Lena River (Arctic Ocean), we investigated large‐scale permafrost OC remobilization across the climate transition to the Preboreal (about 11,600 years ago). Results show that relatively young (about 2,600 years) terrestrial organic matter was largely remobilized from the layer of East Siberian permafrost soils thawing seasonally th
doi_str_mv 10.1029/2024GB008164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121461457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121461457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-7c3f499b1670639a620e7d647b362a210849ab279cd57dd9f5d5061eda2be0a23</originalsourceid><addsrcrecordid>eNp90LFOwzAQBmALgUQpbDyAJVYC9tlx4pEGWpCKQAUGpsiJL21KEoOdCpWnJ6gMTEynkz7d6f8JOeXsgjPQl8BAziaMpVzJPTLiWspIA8h9MmJpqiIFQh2SoxDWjHEZx3pEnqaItjDlW6BT71r66jbdkj6ib03lXehpZnzhOrrA1hV1U3-Zvh7W3tF-hfQal40pa9PQe-xXpkO6qAMek4PKNAFPfueYvExvnrPbaP4wu8uu5lEJgusoKUUltS64SpgS2ihgmFglk0IoMMBZKrUpINGljRNrdRXbmCmO1kCBzIAYk7Pd3XfvPjYY-nztNr4bXuaCA5dqyJgM6nynyiFP8Fjl775ujd_mnOU_teV_axs47Phn3eD2X5vPJhnwWGvxDW0PbHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121461457</pqid></control><display><type>article</type><title>Feedbacks From Young Permafrost Carbon Remobilization to the Deglacial Methane Rise</title><source>Wiley Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sabino, M. ; Gustafsson, Ö. ; Wild, B. ; Semiletov, I. P. ; Dudarev, O. V. ; Ingrosso, G. ; Tesi, T.</creator><creatorcontrib>Sabino, M. ; Gustafsson, Ö. ; Wild, B. ; Semiletov, I. P. ; Dudarev, O. V. ; Ingrosso, G. ; Tesi, T.</creatorcontrib><description>The abrupt warming events punctuating the Termination 1 (about 11.7–18 ka Before Present, BP) were marked by sharp rises in the concentration of atmospheric methane (CH4). The role of permafrost organic carbon (OC) in these rises is still debated, with studies based on top‐down measurements of radiocarbon (14C) content of CH4 trapped in ice cores suggesting minimum contributions from old and strongly 14C‐depleted permafrost OC. However, organic matter from permafrost can exhibit a continuum of 14C ages (contemporaneous to &gt;50 ky). Here, we investigate the large‐scale permafrost remobilization at the Younger Dryas‐Preboreal transition (ca. 11.6 ka BP) using the sedimentary record deposited at the Lena River paleo‐outlet (Arctic Ocean) to reflect permafrost destabilization in this vast drainage basin. Terrestrial OC was isolated from sediments and characterized geochemically measuring δ13C, Δ14C, and lignin phenol molecular fossils. Results indicate massive remobilization of relatively young (about 2,600 years) permafrost OC from inland Siberia after abrupt warming triggered severe active layer deepening. Methane emissions from this young fraction of permafrost OC contributed to the deglacial CH4 rise. This study stresses that underestimating permafrost complexities may affect our comprehension of the deglacial permafrost OC‐climate feedback and helps understand how modern permafrost systems may react to rapid warming events, including enhanced CH4 emissions that would amplify anthropogenic climate change. Plain Language Summary Feedback on climate change through methane emissions from organic carbon (OC) released from thawing permafrost soils is still debated. Studies investigating rapid warming events from the last 15,000 years and measuring the radiocarbon content in methane from ancient air trapped in ice cores suggested small contributions from the oldest (10,000 years or more) and most refractory OC fraction to the deglacial methane rise. However, the younger and more reactive OC likely contributed more to methane emissions from permafrost systems. Using terrestrial material from sediments deposited at the paleo‐delta of the Lena River (Arctic Ocean), we investigated large‐scale permafrost OC remobilization across the climate transition to the Preboreal (about 11,600 years ago). Results show that relatively young (about 2,600 years) terrestrial organic matter was largely remobilized from the layer of East Siberian permafrost soils thawing seasonally that deepened fast due to abrupt warming. Using the young radiocarbon age of remobilized permafrost OC established in this study suggests that permafrost systems might have contributed more than previously thought to the deglacial methane rise. Considering more components of the heterogeneous permafrost OC pool will be crucial to better constrain past and future impacts on climate change. Key Points A few thousand years old permafrost organic carbon (OC) was massively remobilized from East Siberian soils during the Preboreal climate transition Remineralization of a few thousand years old OC may increase the maximum allowable deglacial methane emissions from permafrost Age complexities of permafrost OC must be considered to better constrain the permafrost carbon‐climate feedback</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1029/2024GB008164</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>abrupt climate transitions ; Active layer ; active layer deepening ; Anthropogenic climate changes ; Anthropogenic factors ; Atmospheric methane ; Carbon ; Carbon 13 ; Carbon 14 ; Carbon isotopes ; Climate change ; Climate feedback ; climate warming ; Cores ; Destabilization ; Drainage basins ; Emissions ; Feedback ; Fossils ; Glacial periods ; Human influences ; Ice cores ; Melting ; Methane ; Methane emissions ; Oceans ; Organic carbon ; Organic matter ; Organic soils ; Outlets ; particulate organic carbon ; Permafrost ; permafrost organic carbon ; Permafrost soils ; Phenols ; Preboreal ; Radiocarbon dating ; Radiometric dating ; Rivers ; Sediment ; Sediments ; Soil investigations ; Soil layers ; Soils ; Thawing ; Younger Dryas</subject><ispartof>Global biogeochemical cycles, 2024-10, Vol.38 (10), p.n/a</ispartof><rights>2024. The Author(s).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2319-7c3f499b1670639a620e7d647b362a210849ab279cd57dd9f5d5061eda2be0a23</cites><orcidid>0000-0002-9611-0815 ; 0000-0002-2560-0171 ; 0000-0002-1922-0527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2024GB008164$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2024GB008164$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Sabino, M.</creatorcontrib><creatorcontrib>Gustafsson, Ö.</creatorcontrib><creatorcontrib>Wild, B.</creatorcontrib><creatorcontrib>Semiletov, I. P.</creatorcontrib><creatorcontrib>Dudarev, O. V.</creatorcontrib><creatorcontrib>Ingrosso, G.</creatorcontrib><creatorcontrib>Tesi, T.</creatorcontrib><title>Feedbacks From Young Permafrost Carbon Remobilization to the Deglacial Methane Rise</title><title>Global biogeochemical cycles</title><description>The abrupt warming events punctuating the Termination 1 (about 11.7–18 ka Before Present, BP) were marked by sharp rises in the concentration of atmospheric methane (CH4). The role of permafrost organic carbon (OC) in these rises is still debated, with studies based on top‐down measurements of radiocarbon (14C) content of CH4 trapped in ice cores suggesting minimum contributions from old and strongly 14C‐depleted permafrost OC. However, organic matter from permafrost can exhibit a continuum of 14C ages (contemporaneous to &gt;50 ky). Here, we investigate the large‐scale permafrost remobilization at the Younger Dryas‐Preboreal transition (ca. 11.6 ka BP) using the sedimentary record deposited at the Lena River paleo‐outlet (Arctic Ocean) to reflect permafrost destabilization in this vast drainage basin. Terrestrial OC was isolated from sediments and characterized geochemically measuring δ13C, Δ14C, and lignin phenol molecular fossils. Results indicate massive remobilization of relatively young (about 2,600 years) permafrost OC from inland Siberia after abrupt warming triggered severe active layer deepening. Methane emissions from this young fraction of permafrost OC contributed to the deglacial CH4 rise. This study stresses that underestimating permafrost complexities may affect our comprehension of the deglacial permafrost OC‐climate feedback and helps understand how modern permafrost systems may react to rapid warming events, including enhanced CH4 emissions that would amplify anthropogenic climate change. Plain Language Summary Feedback on climate change through methane emissions from organic carbon (OC) released from thawing permafrost soils is still debated. Studies investigating rapid warming events from the last 15,000 years and measuring the radiocarbon content in methane from ancient air trapped in ice cores suggested small contributions from the oldest (10,000 years or more) and most refractory OC fraction to the deglacial methane rise. However, the younger and more reactive OC likely contributed more to methane emissions from permafrost systems. Using terrestrial material from sediments deposited at the paleo‐delta of the Lena River (Arctic Ocean), we investigated large‐scale permafrost OC remobilization across the climate transition to the Preboreal (about 11,600 years ago). Results show that relatively young (about 2,600 years) terrestrial organic matter was largely remobilized from the layer of East Siberian permafrost soils thawing seasonally that deepened fast due to abrupt warming. Using the young radiocarbon age of remobilized permafrost OC established in this study suggests that permafrost systems might have contributed more than previously thought to the deglacial methane rise. Considering more components of the heterogeneous permafrost OC pool will be crucial to better constrain past and future impacts on climate change. Key Points A few thousand years old permafrost organic carbon (OC) was massively remobilized from East Siberian soils during the Preboreal climate transition Remineralization of a few thousand years old OC may increase the maximum allowable deglacial methane emissions from permafrost Age complexities of permafrost OC must be considered to better constrain the permafrost carbon‐climate feedback</description><subject>abrupt climate transitions</subject><subject>Active layer</subject><subject>active layer deepening</subject><subject>Anthropogenic climate changes</subject><subject>Anthropogenic factors</subject><subject>Atmospheric methane</subject><subject>Carbon</subject><subject>Carbon 13</subject><subject>Carbon 14</subject><subject>Carbon isotopes</subject><subject>Climate change</subject><subject>Climate feedback</subject><subject>climate warming</subject><subject>Cores</subject><subject>Destabilization</subject><subject>Drainage basins</subject><subject>Emissions</subject><subject>Feedback</subject><subject>Fossils</subject><subject>Glacial periods</subject><subject>Human influences</subject><subject>Ice cores</subject><subject>Melting</subject><subject>Methane</subject><subject>Methane emissions</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Outlets</subject><subject>particulate organic carbon</subject><subject>Permafrost</subject><subject>permafrost organic carbon</subject><subject>Permafrost soils</subject><subject>Phenols</subject><subject>Preboreal</subject><subject>Radiocarbon dating</subject><subject>Radiometric dating</subject><subject>Rivers</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Soil investigations</subject><subject>Soil layers</subject><subject>Soils</subject><subject>Thawing</subject><subject>Younger Dryas</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90LFOwzAQBmALgUQpbDyAJVYC9tlx4pEGWpCKQAUGpsiJL21KEoOdCpWnJ6gMTEynkz7d6f8JOeXsgjPQl8BAziaMpVzJPTLiWspIA8h9MmJpqiIFQh2SoxDWjHEZx3pEnqaItjDlW6BT71r66jbdkj6ib03lXehpZnzhOrrA1hV1U3-Zvh7W3tF-hfQal40pa9PQe-xXpkO6qAMek4PKNAFPfueYvExvnrPbaP4wu8uu5lEJgusoKUUltS64SpgS2ihgmFglk0IoMMBZKrUpINGljRNrdRXbmCmO1kCBzIAYk7Pd3XfvPjYY-nztNr4bXuaCA5dqyJgM6nynyiFP8Fjl775ujd_mnOU_teV_axs47Phn3eD2X5vPJhnwWGvxDW0PbHo</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Sabino, M.</creator><creator>Gustafsson, Ö.</creator><creator>Wild, B.</creator><creator>Semiletov, I. P.</creator><creator>Dudarev, O. V.</creator><creator>Ingrosso, G.</creator><creator>Tesi, T.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-9611-0815</orcidid><orcidid>https://orcid.org/0000-0002-2560-0171</orcidid><orcidid>https://orcid.org/0000-0002-1922-0527</orcidid></search><sort><creationdate>202410</creationdate><title>Feedbacks From Young Permafrost Carbon Remobilization to the Deglacial Methane Rise</title><author>Sabino, M. ; Gustafsson, Ö. ; Wild, B. ; Semiletov, I. P. ; Dudarev, O. V. ; Ingrosso, G. ; Tesi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-7c3f499b1670639a620e7d647b362a210849ab279cd57dd9f5d5061eda2be0a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>abrupt climate transitions</topic><topic>Active layer</topic><topic>active layer deepening</topic><topic>Anthropogenic climate changes</topic><topic>Anthropogenic factors</topic><topic>Atmospheric methane</topic><topic>Carbon</topic><topic>Carbon 13</topic><topic>Carbon 14</topic><topic>Carbon isotopes</topic><topic>Climate change</topic><topic>Climate feedback</topic><topic>climate warming</topic><topic>Cores</topic><topic>Destabilization</topic><topic>Drainage basins</topic><topic>Emissions</topic><topic>Feedback</topic><topic>Fossils</topic><topic>Glacial periods</topic><topic>Human influences</topic><topic>Ice cores</topic><topic>Melting</topic><topic>Methane</topic><topic>Methane emissions</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Outlets</topic><topic>particulate organic carbon</topic><topic>Permafrost</topic><topic>permafrost organic carbon</topic><topic>Permafrost soils</topic><topic>Phenols</topic><topic>Preboreal</topic><topic>Radiocarbon dating</topic><topic>Radiometric dating</topic><topic>Rivers</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Soil investigations</topic><topic>Soil layers</topic><topic>Soils</topic><topic>Thawing</topic><topic>Younger Dryas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabino, M.</creatorcontrib><creatorcontrib>Gustafsson, Ö.</creatorcontrib><creatorcontrib>Wild, B.</creatorcontrib><creatorcontrib>Semiletov, I. P.</creatorcontrib><creatorcontrib>Dudarev, O. V.</creatorcontrib><creatorcontrib>Ingrosso, G.</creatorcontrib><creatorcontrib>Tesi, T.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabino, M.</au><au>Gustafsson, Ö.</au><au>Wild, B.</au><au>Semiletov, I. P.</au><au>Dudarev, O. V.</au><au>Ingrosso, G.</au><au>Tesi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedbacks From Young Permafrost Carbon Remobilization to the Deglacial Methane Rise</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2024-10</date><risdate>2024</risdate><volume>38</volume><issue>10</issue><epage>n/a</epage><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>The abrupt warming events punctuating the Termination 1 (about 11.7–18 ka Before Present, BP) were marked by sharp rises in the concentration of atmospheric methane (CH4). The role of permafrost organic carbon (OC) in these rises is still debated, with studies based on top‐down measurements of radiocarbon (14C) content of CH4 trapped in ice cores suggesting minimum contributions from old and strongly 14C‐depleted permafrost OC. However, organic matter from permafrost can exhibit a continuum of 14C ages (contemporaneous to &gt;50 ky). Here, we investigate the large‐scale permafrost remobilization at the Younger Dryas‐Preboreal transition (ca. 11.6 ka BP) using the sedimentary record deposited at the Lena River paleo‐outlet (Arctic Ocean) to reflect permafrost destabilization in this vast drainage basin. Terrestrial OC was isolated from sediments and characterized geochemically measuring δ13C, Δ14C, and lignin phenol molecular fossils. Results indicate massive remobilization of relatively young (about 2,600 years) permafrost OC from inland Siberia after abrupt warming triggered severe active layer deepening. Methane emissions from this young fraction of permafrost OC contributed to the deglacial CH4 rise. This study stresses that underestimating permafrost complexities may affect our comprehension of the deglacial permafrost OC‐climate feedback and helps understand how modern permafrost systems may react to rapid warming events, including enhanced CH4 emissions that would amplify anthropogenic climate change. Plain Language Summary Feedback on climate change through methane emissions from organic carbon (OC) released from thawing permafrost soils is still debated. Studies investigating rapid warming events from the last 15,000 years and measuring the radiocarbon content in methane from ancient air trapped in ice cores suggested small contributions from the oldest (10,000 years or more) and most refractory OC fraction to the deglacial methane rise. However, the younger and more reactive OC likely contributed more to methane emissions from permafrost systems. Using terrestrial material from sediments deposited at the paleo‐delta of the Lena River (Arctic Ocean), we investigated large‐scale permafrost OC remobilization across the climate transition to the Preboreal (about 11,600 years ago). Results show that relatively young (about 2,600 years) terrestrial organic matter was largely remobilized from the layer of East Siberian permafrost soils thawing seasonally that deepened fast due to abrupt warming. Using the young radiocarbon age of remobilized permafrost OC established in this study suggests that permafrost systems might have contributed more than previously thought to the deglacial methane rise. Considering more components of the heterogeneous permafrost OC pool will be crucial to better constrain past and future impacts on climate change. Key Points A few thousand years old permafrost organic carbon (OC) was massively remobilized from East Siberian soils during the Preboreal climate transition Remineralization of a few thousand years old OC may increase the maximum allowable deglacial methane emissions from permafrost Age complexities of permafrost OC must be considered to better constrain the permafrost carbon‐climate feedback</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2024GB008164</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9611-0815</orcidid><orcidid>https://orcid.org/0000-0002-2560-0171</orcidid><orcidid>https://orcid.org/0000-0002-1922-0527</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2024-10, Vol.38 (10), p.n/a
issn 0886-6236
1944-9224
language eng
recordid cdi_proquest_journals_3121461457
source Wiley Journals; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects abrupt climate transitions
Active layer
active layer deepening
Anthropogenic climate changes
Anthropogenic factors
Atmospheric methane
Carbon
Carbon 13
Carbon 14
Carbon isotopes
Climate change
Climate feedback
climate warming
Cores
Destabilization
Drainage basins
Emissions
Feedback
Fossils
Glacial periods
Human influences
Ice cores
Melting
Methane
Methane emissions
Oceans
Organic carbon
Organic matter
Organic soils
Outlets
particulate organic carbon
Permafrost
permafrost organic carbon
Permafrost soils
Phenols
Preboreal
Radiocarbon dating
Radiometric dating
Rivers
Sediment
Sediments
Soil investigations
Soil layers
Soils
Thawing
Younger Dryas
title Feedbacks From Young Permafrost Carbon Remobilization to the Deglacial Methane Rise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedbacks%20From%20Young%20Permafrost%20Carbon%20Remobilization%20to%20the%20Deglacial%20Methane%20Rise&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Sabino,%20M.&rft.date=2024-10&rft.volume=38&rft.issue=10&rft.epage=n/a&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/2024GB008164&rft_dat=%3Cproquest_cross%3E3121461457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121461457&rft_id=info:pmid/&rfr_iscdi=true