The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water

Plasma activated water (PAW) has been prepared using atmospheric pressure air dielectric barrier discharge with the bubbling method. This study aims to elucidate the crucial role of gas-liquid interface in determining the physicochemical properties and biological reactivity of PAW, as well as descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma chemistry and plasma processing 2024-11, Vol.44 (6), p.2137-2152
Hauptverfasser: Zhou, Zhenyu, Qi, Zhihua, Zhao, Xu, Liu, Dongping, Ni, Weiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2152
container_issue 6
container_start_page 2137
container_title Plasma chemistry and plasma processing
container_volume 44
creator Zhou, Zhenyu
Qi, Zhihua
Zhao, Xu
Liu, Dongping
Ni, Weiyuan
description Plasma activated water (PAW) has been prepared using atmospheric pressure air dielectric barrier discharge with the bubbling method. This study aims to elucidate the crucial role of gas-liquid interface in determining the physicochemical properties and biological reactivity of PAW, as well as describe the process of mass transfer for reactive oxygen and nitrogen species (RONS) during the PAW generation. Gas-liquid interfacial area is regulated by varying the airflow rate. When the airflow rate increases from 0.5 to 16.0 SLM, the concentrations of , , and activated oxygen in PAW increase significantly, and the water-activated time for complete E. coli inactivation can be shortened from more than 320 s to 40 s. The numerical simulation result shows that when the airflow rate increases from 0.5 to 16.0 SLM, the gas-liquid interfacial area increases from 0.014 to 0.3 m 2 /600 mL. The analysis shows that the dependence of the chemical reactivity and the biological reactivity on the interface area is mainly attributed to the change of the mass flux with the interface area.
doi_str_mv 10.1007/s11090-024-10508-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121261656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121261656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-3f0a11dbe411a52da4d8da626470a8acef8014f44628ffe9265a5f0f238b6453</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA8-pMNptNj7VqLRQUKXgM6W7Spmx32yQV-u_NWsGbl5lheN-b4RFyi3CPAOVDQIQRZMB4hlCAzPCMDLAoWSZHUpyTAbA085zxS3IVwgYgYXk5IMfF2tCPrjG0s3SqQzZ3-4Or6ayNxltdGepaOuna6Lumce2Kxl5vdBXdl4vHnho7T5-caUwVvavoo_bemX4VqrX2K0PfGx22mo57RkdT089U_TW5sLoJ5ua3D8ni5Xkxec3mb9PZZDzPKgYQs9yCRqyXhiPqgtWa17LWgglegpbpQSsBueVcMGmtGTFR6MKCZblcCl7kQ3J3st35bn8wIapNd_BtuqhyZMgEikIkFTupKt-F4I1VO--22h8VguoTVqeEVUpY_SSsMEH5CQpJ3K6M_7P-h_oGm8Z-WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121261656</pqid></control><display><type>article</type><title>The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Zhenyu ; Qi, Zhihua ; Zhao, Xu ; Liu, Dongping ; Ni, Weiyuan</creator><creatorcontrib>Zhou, Zhenyu ; Qi, Zhihua ; Zhao, Xu ; Liu, Dongping ; Ni, Weiyuan</creatorcontrib><description>Plasma activated water (PAW) has been prepared using atmospheric pressure air dielectric barrier discharge with the bubbling method. This study aims to elucidate the crucial role of gas-liquid interface in determining the physicochemical properties and biological reactivity of PAW, as well as describe the process of mass transfer for reactive oxygen and nitrogen species (RONS) during the PAW generation. Gas-liquid interfacial area is regulated by varying the airflow rate. When the airflow rate increases from 0.5 to 16.0 SLM, the concentrations of , , and activated oxygen in PAW increase significantly, and the water-activated time for complete E. coli inactivation can be shortened from more than 320 s to 40 s. The numerical simulation result shows that when the airflow rate increases from 0.5 to 16.0 SLM, the gas-liquid interfacial area increases from 0.014 to 0.3 m 2 /600 mL. The analysis shows that the dependence of the chemical reactivity and the biological reactivity on the interface area is mainly attributed to the change of the mass flux with the interface area.</description><identifier>ISSN: 0272-4324</identifier><identifier>EISSN: 1572-8986</identifier><identifier>DOI: 10.1007/s11090-024-10508-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Air flow ; Biological activity ; Biological properties ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Classical Mechanics ; Dielectric barrier discharge ; E coli ; Inorganic Chemistry ; Mass transfer ; Mechanical Engineering ; Original Paper ; Oxygen ; Reactivity ; Water discharge</subject><ispartof>Plasma chemistry and plasma processing, 2024-11, Vol.44 (6), p.2137-2152</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-3f0a11dbe411a52da4d8da626470a8acef8014f44628ffe9265a5f0f238b6453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11090-024-10508-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11090-024-10508-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Qi, Zhihua</creatorcontrib><creatorcontrib>Zhao, Xu</creatorcontrib><creatorcontrib>Liu, Dongping</creatorcontrib><creatorcontrib>Ni, Weiyuan</creatorcontrib><title>The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water</title><title>Plasma chemistry and plasma processing</title><addtitle>Plasma Chem Plasma Process</addtitle><description>Plasma activated water (PAW) has been prepared using atmospheric pressure air dielectric barrier discharge with the bubbling method. This study aims to elucidate the crucial role of gas-liquid interface in determining the physicochemical properties and biological reactivity of PAW, as well as describe the process of mass transfer for reactive oxygen and nitrogen species (RONS) during the PAW generation. Gas-liquid interfacial area is regulated by varying the airflow rate. When the airflow rate increases from 0.5 to 16.0 SLM, the concentrations of , , and activated oxygen in PAW increase significantly, and the water-activated time for complete E. coli inactivation can be shortened from more than 320 s to 40 s. The numerical simulation result shows that when the airflow rate increases from 0.5 to 16.0 SLM, the gas-liquid interfacial area increases from 0.014 to 0.3 m 2 /600 mL. The analysis shows that the dependence of the chemical reactivity and the biological reactivity on the interface area is mainly attributed to the change of the mass flux with the interface area.</description><subject>Air flow</subject><subject>Biological activity</subject><subject>Biological properties</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Dielectric barrier discharge</subject><subject>E coli</subject><subject>Inorganic Chemistry</subject><subject>Mass transfer</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Reactivity</subject><subject>Water discharge</subject><issn>0272-4324</issn><issn>1572-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPA8-pMNptNj7VqLRQUKXgM6W7Spmx32yQV-u_NWsGbl5lheN-b4RFyi3CPAOVDQIQRZMB4hlCAzPCMDLAoWSZHUpyTAbA085zxS3IVwgYgYXk5IMfF2tCPrjG0s3SqQzZ3-4Or6ayNxltdGepaOuna6Lumce2Kxl5vdBXdl4vHnho7T5-caUwVvavoo_bemX4VqrX2K0PfGx22mo57RkdT089U_TW5sLoJ5ua3D8ni5Xkxec3mb9PZZDzPKgYQs9yCRqyXhiPqgtWa17LWgglegpbpQSsBueVcMGmtGTFR6MKCZblcCl7kQ3J3st35bn8wIapNd_BtuqhyZMgEikIkFTupKt-F4I1VO--22h8VguoTVqeEVUpY_SSsMEH5CQpJ3K6M_7P-h_oGm8Z-WA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhou, Zhenyu</creator><creator>Qi, Zhihua</creator><creator>Zhao, Xu</creator><creator>Liu, Dongping</creator><creator>Ni, Weiyuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water</title><author>Zhou, Zhenyu ; Qi, Zhihua ; Zhao, Xu ; Liu, Dongping ; Ni, Weiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-3f0a11dbe411a52da4d8da626470a8acef8014f44628ffe9265a5f0f238b6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air flow</topic><topic>Biological activity</topic><topic>Biological properties</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Dielectric barrier discharge</topic><topic>E coli</topic><topic>Inorganic Chemistry</topic><topic>Mass transfer</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Reactivity</topic><topic>Water discharge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Qi, Zhihua</creatorcontrib><creatorcontrib>Zhao, Xu</creatorcontrib><creatorcontrib>Liu, Dongping</creatorcontrib><creatorcontrib>Ni, Weiyuan</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma chemistry and plasma processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhenyu</au><au>Qi, Zhihua</au><au>Zhao, Xu</au><au>Liu, Dongping</au><au>Ni, Weiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water</atitle><jtitle>Plasma chemistry and plasma processing</jtitle><stitle>Plasma Chem Plasma Process</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>44</volume><issue>6</issue><spage>2137</spage><epage>2152</epage><pages>2137-2152</pages><issn>0272-4324</issn><eissn>1572-8986</eissn><abstract>Plasma activated water (PAW) has been prepared using atmospheric pressure air dielectric barrier discharge with the bubbling method. This study aims to elucidate the crucial role of gas-liquid interface in determining the physicochemical properties and biological reactivity of PAW, as well as describe the process of mass transfer for reactive oxygen and nitrogen species (RONS) during the PAW generation. Gas-liquid interfacial area is regulated by varying the airflow rate. When the airflow rate increases from 0.5 to 16.0 SLM, the concentrations of , , and activated oxygen in PAW increase significantly, and the water-activated time for complete E. coli inactivation can be shortened from more than 320 s to 40 s. The numerical simulation result shows that when the airflow rate increases from 0.5 to 16.0 SLM, the gas-liquid interfacial area increases from 0.014 to 0.3 m 2 /600 mL. The analysis shows that the dependence of the chemical reactivity and the biological reactivity on the interface area is mainly attributed to the change of the mass flux with the interface area.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11090-024-10508-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4324
ispartof Plasma chemistry and plasma processing, 2024-11, Vol.44 (6), p.2137-2152
issn 0272-4324
1572-8986
language eng
recordid cdi_proquest_journals_3121261656
source SpringerLink Journals - AutoHoldings
subjects Air flow
Biological activity
Biological properties
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Classical Mechanics
Dielectric barrier discharge
E coli
Inorganic Chemistry
Mass transfer
Mechanical Engineering
Original Paper
Oxygen
Reactivity
Water discharge
title The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Gas-Liquid%20Interface%20in%20Controlling%20the%20Reactivity%20of%20Air%20Dielectric%20Barrier%20Discharge%20Plasma%20Activated%20Water&rft.jtitle=Plasma%20chemistry%20and%20plasma%20processing&rft.au=Zhou,%20Zhenyu&rft.date=2024-11-01&rft.volume=44&rft.issue=6&rft.spage=2137&rft.epage=2152&rft.pages=2137-2152&rft.issn=0272-4324&rft.eissn=1572-8986&rft_id=info:doi/10.1007/s11090-024-10508-1&rft_dat=%3Cproquest_cross%3E3121261656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121261656&rft_id=info:pmid/&rfr_iscdi=true