Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts
Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fas...
Gespeichert in:
Veröffentlicht in: | Steel research international 2024-11, Vol.95 (11), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Steel research international |
container_volume | 95 |
creator | Guthrie, Roderick I. L. Isac, Mihaiela M. |
description | Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds.
Illustration of burst (or collapsed) microbubbles of argon trapped within a “flash‐frozen” sample of low melting point alloy (freezing point +57 °C), following rapid dipping and withdrawal of a cooled copper bar (≈at −100 °C) from the bath of the molten metal alloy. There, the submerged gas injection system is subjected to rapidly shearing metal flows, which successfully generates microbubbles within the bath. |
doi_str_mv | 10.1002/srin.202300480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121103301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121103301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3120-9107fab6aa7e4b05efea2e79002f22aecad5dd4ec36e1a4899645e3bdbcad5a73</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWGqvngOetyabdD-OtfixUBVaBW8hm53QlOymTXaV_vemVPToXGZgfm8e8xC6pmRKCUlvgzfdNCUpI4QX5AyNaJGVCeP84zzOGaUJywp2iSYhbEksVhRZzkdI3A11bQEvNtJL1YM3oTcq4BXsB-Ohwdp53G8i4NqdhR7ipnWf0mKn8dwOrekkrjplh2BcF7D2rsXrHsDiZ7B9uEIXWtoAk58-Ru8P92-Lp2T5-lgt5stEMZqSpKQk17LOpMyB12QGGmQKeRlf02kqQclm1jQcFMuASl6UZcZnwOqmPm5kzsbo5nR3591-gNCLrRt8Fy1FNKCUMEZopKYnSnkXggctdt600h8EJeKYozjmKH5zjILyJPgyFg7_0GK9ql7-tN-apnia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121103301</pqid></control><display><type>article</type><title>Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Guthrie, Roderick I. L. ; Isac, Mihaiela M.</creator><creatorcontrib>Guthrie, Roderick I. L. ; Isac, Mihaiela M.</creatorcontrib><description>Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds.
Illustration of burst (or collapsed) microbubbles of argon trapped within a “flash‐frozen” sample of low melting point alloy (freezing point +57 °C), following rapid dipping and withdrawal of a cooled copper bar (≈at −100 °C) from the bath of the molten metal alloy. There, the submerged gas injection system is subjected to rapidly shearing metal flows, which successfully generates microbubbles within the bath.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202300480</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Bubbles ; Contact melting ; Cross flow ; Fluid flow ; full-scale model tundish ; Inclusions ; Kinetic energy ; Ladle metallurgy ; Liquid alloys ; Liquid metals ; microbubbles ; numerical simulations ; Redesign ; Shear forces ; slag layer ; slag open eye ; Spherical caps ; Steel making</subject><ispartof>Steel research international, 2024-11, Vol.95 (11), p.n/a</ispartof><rights>2024 The Author(s). Steel Research International published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3120-9107fab6aa7e4b05efea2e79002f22aecad5dd4ec36e1a4899645e3bdbcad5a73</cites><orcidid>0000-0003-2353-0971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202300480$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202300480$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guthrie, Roderick I. L.</creatorcontrib><creatorcontrib>Isac, Mihaiela M.</creatorcontrib><title>Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts</title><title>Steel research international</title><description>Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds.
Illustration of burst (or collapsed) microbubbles of argon trapped within a “flash‐frozen” sample of low melting point alloy (freezing point +57 °C), following rapid dipping and withdrawal of a cooled copper bar (≈at −100 °C) from the bath of the molten metal alloy. There, the submerged gas injection system is subjected to rapidly shearing metal flows, which successfully generates microbubbles within the bath.</description><subject>Aluminum oxide</subject><subject>Bubbles</subject><subject>Contact melting</subject><subject>Cross flow</subject><subject>Fluid flow</subject><subject>full-scale model tundish</subject><subject>Inclusions</subject><subject>Kinetic energy</subject><subject>Ladle metallurgy</subject><subject>Liquid alloys</subject><subject>Liquid metals</subject><subject>microbubbles</subject><subject>numerical simulations</subject><subject>Redesign</subject><subject>Shear forces</subject><subject>slag layer</subject><subject>slag open eye</subject><subject>Spherical caps</subject><subject>Steel making</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1LAzEQxYMoWGqvngOetyabdD-OtfixUBVaBW8hm53QlOymTXaV_vemVPToXGZgfm8e8xC6pmRKCUlvgzfdNCUpI4QX5AyNaJGVCeP84zzOGaUJywp2iSYhbEksVhRZzkdI3A11bQEvNtJL1YM3oTcq4BXsB-Ohwdp53G8i4NqdhR7ipnWf0mKn8dwOrekkrjplh2BcF7D2rsXrHsDiZ7B9uEIXWtoAk58-Ru8P92-Lp2T5-lgt5stEMZqSpKQk17LOpMyB12QGGmQKeRlf02kqQclm1jQcFMuASl6UZcZnwOqmPm5kzsbo5nR3591-gNCLrRt8Fy1FNKCUMEZopKYnSnkXggctdt600h8EJeKYozjmKH5zjILyJPgyFg7_0GK9ql7-tN-apnia</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Guthrie, Roderick I. L.</creator><creator>Isac, Mihaiela M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2353-0971</orcidid></search><sort><creationdate>202411</creationdate><title>Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts</title><author>Guthrie, Roderick I. L. ; Isac, Mihaiela M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3120-9107fab6aa7e4b05efea2e79002f22aecad5dd4ec36e1a4899645e3bdbcad5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Bubbles</topic><topic>Contact melting</topic><topic>Cross flow</topic><topic>Fluid flow</topic><topic>full-scale model tundish</topic><topic>Inclusions</topic><topic>Kinetic energy</topic><topic>Ladle metallurgy</topic><topic>Liquid alloys</topic><topic>Liquid metals</topic><topic>microbubbles</topic><topic>numerical simulations</topic><topic>Redesign</topic><topic>Shear forces</topic><topic>slag layer</topic><topic>slag open eye</topic><topic>Spherical caps</topic><topic>Steel making</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guthrie, Roderick I. L.</creatorcontrib><creatorcontrib>Isac, Mihaiela M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guthrie, Roderick I. L.</au><au>Isac, Mihaiela M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts</atitle><jtitle>Steel research international</jtitle><date>2024-11</date><risdate>2024</risdate><volume>95</volume><issue>11</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds.
Illustration of burst (or collapsed) microbubbles of argon trapped within a “flash‐frozen” sample of low melting point alloy (freezing point +57 °C), following rapid dipping and withdrawal of a cooled copper bar (≈at −100 °C) from the bath of the molten metal alloy. There, the submerged gas injection system is subjected to rapidly shearing metal flows, which successfully generates microbubbles within the bath.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202300480</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2353-0971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1611-3683 |
ispartof | Steel research international, 2024-11, Vol.95 (11), p.n/a |
issn | 1611-3683 1869-344X |
language | eng |
recordid | cdi_proquest_journals_3121103301 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Aluminum oxide Bubbles Contact melting Cross flow Fluid flow full-scale model tundish Inclusions Kinetic energy Ladle metallurgy Liquid alloys Liquid metals microbubbles numerical simulations Redesign Shear forces slag layer slag open eye Spherical caps Steel making |
title | Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20Characteristics%20Required%20for%20the%20Complete%20Removal%20of%20Alumina%20Inclusions%20from%20Steel%20Melts&rft.jtitle=Steel%20research%20international&rft.au=Guthrie,%20Roderick%20I.%20L.&rft.date=2024-11&rft.volume=95&rft.issue=11&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202300480&rft_dat=%3Cproquest_cross%3E3121103301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121103301&rft_id=info:pmid/&rfr_iscdi=true |