Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts

Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2024-11, Vol.95 (11), p.n/a
Hauptverfasser: Guthrie, Roderick I. L., Isac, Mihaiela M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Steel research international
container_volume 95
creator Guthrie, Roderick I. L.
Isac, Mihaiela M.
description Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds. Illustration of burst (or collapsed) microbubbles of argon trapped within a “flash‐frozen” sample of low melting point alloy (freezing point +57 °C), following rapid dipping and withdrawal of a cooled copper bar (≈at −100 °C) from the bath of the molten metal alloy. There, the submerged gas injection system is subjected to rapidly shearing metal flows, which successfully generates microbubbles within the bath.
doi_str_mv 10.1002/srin.202300480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121103301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121103301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3120-9107fab6aa7e4b05efea2e79002f22aecad5dd4ec36e1a4899645e3bdbcad5a73</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWGqvngOetyabdD-OtfixUBVaBW8hm53QlOymTXaV_vemVPToXGZgfm8e8xC6pmRKCUlvgzfdNCUpI4QX5AyNaJGVCeP84zzOGaUJywp2iSYhbEksVhRZzkdI3A11bQEvNtJL1YM3oTcq4BXsB-Ohwdp53G8i4NqdhR7ipnWf0mKn8dwOrekkrjplh2BcF7D2rsXrHsDiZ7B9uEIXWtoAk58-Ru8P92-Lp2T5-lgt5stEMZqSpKQk17LOpMyB12QGGmQKeRlf02kqQclm1jQcFMuASl6UZcZnwOqmPm5kzsbo5nR3591-gNCLrRt8Fy1FNKCUMEZopKYnSnkXggctdt600h8EJeKYozjmKH5zjILyJPgyFg7_0GK9ql7-tN-apnia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121103301</pqid></control><display><type>article</type><title>Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Guthrie, Roderick I. L. ; Isac, Mihaiela M.</creator><creatorcontrib>Guthrie, Roderick I. L. ; Isac, Mihaiela M.</creatorcontrib><description>Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds. Illustration of burst (or collapsed) microbubbles of argon trapped within a “flash‐frozen” sample of low melting point alloy (freezing point +57 °C), following rapid dipping and withdrawal of a cooled copper bar (≈at −100 °C) from the bath of the molten metal alloy. There, the submerged gas injection system is subjected to rapidly shearing metal flows, which successfully generates microbubbles within the bath.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202300480</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Bubbles ; Contact melting ; Cross flow ; Fluid flow ; full-scale model tundish ; Inclusions ; Kinetic energy ; Ladle metallurgy ; Liquid alloys ; Liquid metals ; microbubbles ; numerical simulations ; Redesign ; Shear forces ; slag layer ; slag open eye ; Spherical caps ; Steel making</subject><ispartof>Steel research international, 2024-11, Vol.95 (11), p.n/a</ispartof><rights>2024 The Author(s). Steel Research International published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3120-9107fab6aa7e4b05efea2e79002f22aecad5dd4ec36e1a4899645e3bdbcad5a73</cites><orcidid>0000-0003-2353-0971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202300480$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202300480$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guthrie, Roderick I. L.</creatorcontrib><creatorcontrib>Isac, Mihaiela M.</creatorcontrib><title>Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts</title><title>Steel research international</title><description>Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds. Illustration of burst (or collapsed) microbubbles of argon trapped within a “flash‐frozen” sample of low melting point alloy (freezing point +57 °C), following rapid dipping and withdrawal of a cooled copper bar (≈at −100 °C) from the bath of the molten metal alloy. There, the submerged gas injection system is subjected to rapidly shearing metal flows, which successfully generates microbubbles within the bath.</description><subject>Aluminum oxide</subject><subject>Bubbles</subject><subject>Contact melting</subject><subject>Cross flow</subject><subject>Fluid flow</subject><subject>full-scale model tundish</subject><subject>Inclusions</subject><subject>Kinetic energy</subject><subject>Ladle metallurgy</subject><subject>Liquid alloys</subject><subject>Liquid metals</subject><subject>microbubbles</subject><subject>numerical simulations</subject><subject>Redesign</subject><subject>Shear forces</subject><subject>slag layer</subject><subject>slag open eye</subject><subject>Spherical caps</subject><subject>Steel making</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1LAzEQxYMoWGqvngOetyabdD-OtfixUBVaBW8hm53QlOymTXaV_vemVPToXGZgfm8e8xC6pmRKCUlvgzfdNCUpI4QX5AyNaJGVCeP84zzOGaUJywp2iSYhbEksVhRZzkdI3A11bQEvNtJL1YM3oTcq4BXsB-Ohwdp53G8i4NqdhR7ipnWf0mKn8dwOrekkrjplh2BcF7D2rsXrHsDiZ7B9uEIXWtoAk58-Ru8P92-Lp2T5-lgt5stEMZqSpKQk17LOpMyB12QGGmQKeRlf02kqQclm1jQcFMuASl6UZcZnwOqmPm5kzsbo5nR3591-gNCLrRt8Fy1FNKCUMEZopKYnSnkXggctdt600h8EJeKYozjmKH5zjILyJPgyFg7_0GK9ql7-tN-apnia</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Guthrie, Roderick I. L.</creator><creator>Isac, Mihaiela M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2353-0971</orcidid></search><sort><creationdate>202411</creationdate><title>Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts</title><author>Guthrie, Roderick I. L. ; Isac, Mihaiela M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3120-9107fab6aa7e4b05efea2e79002f22aecad5dd4ec36e1a4899645e3bdbcad5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Bubbles</topic><topic>Contact melting</topic><topic>Cross flow</topic><topic>Fluid flow</topic><topic>full-scale model tundish</topic><topic>Inclusions</topic><topic>Kinetic energy</topic><topic>Ladle metallurgy</topic><topic>Liquid alloys</topic><topic>Liquid metals</topic><topic>microbubbles</topic><topic>numerical simulations</topic><topic>Redesign</topic><topic>Shear forces</topic><topic>slag layer</topic><topic>slag open eye</topic><topic>Spherical caps</topic><topic>Steel making</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guthrie, Roderick I. L.</creatorcontrib><creatorcontrib>Isac, Mihaiela M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guthrie, Roderick I. L.</au><au>Isac, Mihaiela M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts</atitle><jtitle>Steel research international</jtitle><date>2024-11</date><risdate>2024</risdate><volume>95</volume><issue>11</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>Gas bubbling can be an effective means to float out alumina inclusions from liquid steel in a ladle. However, large spherical cap bubbles are formed when using porous plugs, as the liquid steel is nonwetting to the porous refractory. These bubbles rise rapidly through the liquid steel, forming a fast‐moving bubble plume, restricting contact times. Sized microbubbles, by contrast, have now been generated in liquid metals by shearing methods, involving linear crossflows to an entering flow of gas, or alternatively by rotational shearing. Combined with these convective shearing forces, local kinetic energy of turbulence can also play an important part in determining final microbubble size distributions. As microbubbles have much smaller rise velocities and present a far greater inclusion capture surface area than those of a single large bubble of the same gross volume, this will allow us to remove sub‐50 μm inclusions from liquid steel. It is expected that this goal will require a redesign of current ladle shrouds. Illustration of burst (or collapsed) microbubbles of argon trapped within a “flash‐frozen” sample of low melting point alloy (freezing point +57 °C), following rapid dipping and withdrawal of a cooled copper bar (≈at −100 °C) from the bath of the molten metal alloy. There, the submerged gas injection system is subjected to rapidly shearing metal flows, which successfully generates microbubbles within the bath.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202300480</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2353-0971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2024-11, Vol.95 (11), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_proquest_journals_3121103301
source Wiley Online Library - AutoHoldings Journals
subjects Aluminum oxide
Bubbles
Contact melting
Cross flow
Fluid flow
full-scale model tundish
Inclusions
Kinetic energy
Ladle metallurgy
Liquid alloys
Liquid metals
microbubbles
numerical simulations
Redesign
Shear forces
slag layer
slag open eye
Spherical caps
Steel making
title Bubble Characteristics Required for the Complete Removal of Alumina Inclusions from Steel Melts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20Characteristics%20Required%20for%20the%20Complete%20Removal%20of%20Alumina%20Inclusions%20from%20Steel%20Melts&rft.jtitle=Steel%20research%20international&rft.au=Guthrie,%20Roderick%20I.%20L.&rft.date=2024-11&rft.volume=95&rft.issue=11&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202300480&rft_dat=%3Cproquest_cross%3E3121103301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121103301&rft_id=info:pmid/&rfr_iscdi=true