RGB Guided ToF Imaging System: A Survey of Deep Learning-Based Methods
Integrating an RGB camera into a ToF imaging system has become a significant technique for perceiving the real world. The RGB guided ToF imaging system is crucial to several applications, including face anti-spoofing, saliency detection, and trajectory prediction. Depending on the distance of the wo...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2024-11, Vol.132 (11), p.4954-4991 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4991 |
---|---|
container_issue | 11 |
container_start_page | 4954 |
container_title | International journal of computer vision |
container_volume | 132 |
creator | Qiao, Xin Poggi, Matteo Deng, Pengchao Wei, Hao Ge, Chenyang Mattoccia, Stefano |
description | Integrating an RGB camera into a ToF imaging system has become a significant technique for perceiving the real world. The RGB guided ToF imaging system is crucial to several applications, including face anti-spoofing, saliency detection, and trajectory prediction. Depending on the distance of the working range, the implementation schemes of the RGB guided ToF imaging systems are different. Specifically, ToF sensors with a uniform field of illumination, which can output dense depth but have low resolution, are typically used for close-range measurements. In contrast, LiDARs, which emit laser pulses and can only capture sparse depth, are usually employed for long-range detection. In the two cases, depth quality improvement for RGB guided ToF imaging corresponds to two sub-tasks: guided depth super-resolution and guided depth completion. In light of the recent significant boost to the field provided by deep learning, this paper comprehensively reviews the works related to RGB guided ToF imaging, including network structures, learning strategies, evaluation metrics, benchmark datasets, and objective functions. Besides, we present quantitative comparisons of state-of-the-art methods on widely used benchmark datasets. Finally, we discuss future trends and the challenges in real applications for further research. |
doi_str_mv | 10.1007/s11263-024-02089-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121049249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121049249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9a27042cb9016f78e7f6da54f3b1eb76c6b8ca33391d3449b253570b15bc5b7d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKt_wFPAc3Tytdl4a2tbCxXB1nNIdrO1xe7WZFfovze6gjcPw1zem4GH0DWFWwqg7iKlLOMEmEgDuSbyBA2oVJxQAfIUDUAzIDLT9BxdxLgDAJYzPkCzl_kYz7tt6Uu8bmZ4sbebbb3Bq2Ns_f4ej_CqC5_-iJsKP3h_wEtvQ50IMrYxOU--fWvKeInOKvse_dXvHqLX2XQ9eSTL5_liMlqSggG0RFumQLDCaaBZpXKvqqy0UlTcUe9UVmQuLyznXNOSC6Edk1wqcFS6QjpV8iG66e8eQvPR-diaXdOFOr00nDIKQjOhE8V6qghNjMFX5hC2exuOhoL57mX6Xib1Mj-9jEwS76WY4Hrjw9_pf6wvGWdqtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121049249</pqid></control><display><type>article</type><title>RGB Guided ToF Imaging System: A Survey of Deep Learning-Based Methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qiao, Xin ; Poggi, Matteo ; Deng, Pengchao ; Wei, Hao ; Ge, Chenyang ; Mattoccia, Stefano</creator><creatorcontrib>Qiao, Xin ; Poggi, Matteo ; Deng, Pengchao ; Wei, Hao ; Ge, Chenyang ; Mattoccia, Stefano</creatorcontrib><description>Integrating an RGB camera into a ToF imaging system has become a significant technique for perceiving the real world. The RGB guided ToF imaging system is crucial to several applications, including face anti-spoofing, saliency detection, and trajectory prediction. Depending on the distance of the working range, the implementation schemes of the RGB guided ToF imaging systems are different. Specifically, ToF sensors with a uniform field of illumination, which can output dense depth but have low resolution, are typically used for close-range measurements. In contrast, LiDARs, which emit laser pulses and can only capture sparse depth, are usually employed for long-range detection. In the two cases, depth quality improvement for RGB guided ToF imaging corresponds to two sub-tasks: guided depth super-resolution and guided depth completion. In light of the recent significant boost to the field provided by deep learning, this paper comprehensively reviews the works related to RGB guided ToF imaging, including network structures, learning strategies, evaluation metrics, benchmark datasets, and objective functions. Besides, we present quantitative comparisons of state-of-the-art methods on widely used benchmark datasets. Finally, we discuss future trends and the challenges in real applications for further research.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-024-02089-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Benchmarks ; Computer Imaging ; Computer Science ; Datasets ; Deep learning ; Image Processing and Computer Vision ; Image resolution ; Pattern Recognition ; Pattern Recognition and Graphics ; Spoofing ; Vision</subject><ispartof>International journal of computer vision, 2024-11, Vol.132 (11), p.4954-4991</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9a27042cb9016f78e7f6da54f3b1eb76c6b8ca33391d3449b253570b15bc5b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-024-02089-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-024-02089-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qiao, Xin</creatorcontrib><creatorcontrib>Poggi, Matteo</creatorcontrib><creatorcontrib>Deng, Pengchao</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Ge, Chenyang</creatorcontrib><creatorcontrib>Mattoccia, Stefano</creatorcontrib><title>RGB Guided ToF Imaging System: A Survey of Deep Learning-Based Methods</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>Integrating an RGB camera into a ToF imaging system has become a significant technique for perceiving the real world. The RGB guided ToF imaging system is crucial to several applications, including face anti-spoofing, saliency detection, and trajectory prediction. Depending on the distance of the working range, the implementation schemes of the RGB guided ToF imaging systems are different. Specifically, ToF sensors with a uniform field of illumination, which can output dense depth but have low resolution, are typically used for close-range measurements. In contrast, LiDARs, which emit laser pulses and can only capture sparse depth, are usually employed for long-range detection. In the two cases, depth quality improvement for RGB guided ToF imaging corresponds to two sub-tasks: guided depth super-resolution and guided depth completion. In light of the recent significant boost to the field provided by deep learning, this paper comprehensively reviews the works related to RGB guided ToF imaging, including network structures, learning strategies, evaluation metrics, benchmark datasets, and objective functions. Besides, we present quantitative comparisons of state-of-the-art methods on widely used benchmark datasets. Finally, we discuss future trends and the challenges in real applications for further research.</description><subject>Artificial Intelligence</subject><subject>Benchmarks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Image resolution</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Spoofing</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKt_wFPAc3Tytdl4a2tbCxXB1nNIdrO1xe7WZFfovze6gjcPw1zem4GH0DWFWwqg7iKlLOMEmEgDuSbyBA2oVJxQAfIUDUAzIDLT9BxdxLgDAJYzPkCzl_kYz7tt6Uu8bmZ4sbebbb3Bq2Ns_f4ej_CqC5_-iJsKP3h_wEtvQ50IMrYxOU--fWvKeInOKvse_dXvHqLX2XQ9eSTL5_liMlqSggG0RFumQLDCaaBZpXKvqqy0UlTcUe9UVmQuLyznXNOSC6Edk1wqcFS6QjpV8iG66e8eQvPR-diaXdOFOr00nDIKQjOhE8V6qghNjMFX5hC2exuOhoL57mX6Xib1Mj-9jEwS76WY4Hrjw9_pf6wvGWdqtA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Qiao, Xin</creator><creator>Poggi, Matteo</creator><creator>Deng, Pengchao</creator><creator>Wei, Hao</creator><creator>Ge, Chenyang</creator><creator>Mattoccia, Stefano</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20241101</creationdate><title>RGB Guided ToF Imaging System: A Survey of Deep Learning-Based Methods</title><author>Qiao, Xin ; Poggi, Matteo ; Deng, Pengchao ; Wei, Hao ; Ge, Chenyang ; Mattoccia, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9a27042cb9016f78e7f6da54f3b1eb76c6b8ca33391d3449b253570b15bc5b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Benchmarks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Image resolution</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Spoofing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Xin</creatorcontrib><creatorcontrib>Poggi, Matteo</creatorcontrib><creatorcontrib>Deng, Pengchao</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Ge, Chenyang</creatorcontrib><creatorcontrib>Mattoccia, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Xin</au><au>Poggi, Matteo</au><au>Deng, Pengchao</au><au>Wei, Hao</au><au>Ge, Chenyang</au><au>Mattoccia, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RGB Guided ToF Imaging System: A Survey of Deep Learning-Based Methods</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>132</volume><issue>11</issue><spage>4954</spage><epage>4991</epage><pages>4954-4991</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Integrating an RGB camera into a ToF imaging system has become a significant technique for perceiving the real world. The RGB guided ToF imaging system is crucial to several applications, including face anti-spoofing, saliency detection, and trajectory prediction. Depending on the distance of the working range, the implementation schemes of the RGB guided ToF imaging systems are different. Specifically, ToF sensors with a uniform field of illumination, which can output dense depth but have low resolution, are typically used for close-range measurements. In contrast, LiDARs, which emit laser pulses and can only capture sparse depth, are usually employed for long-range detection. In the two cases, depth quality improvement for RGB guided ToF imaging corresponds to two sub-tasks: guided depth super-resolution and guided depth completion. In light of the recent significant boost to the field provided by deep learning, this paper comprehensively reviews the works related to RGB guided ToF imaging, including network structures, learning strategies, evaluation metrics, benchmark datasets, and objective functions. Besides, we present quantitative comparisons of state-of-the-art methods on widely used benchmark datasets. Finally, we discuss future trends and the challenges in real applications for further research.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-024-02089-5</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2024-11, Vol.132 (11), p.4954-4991 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_journals_3121049249 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Benchmarks Computer Imaging Computer Science Datasets Deep learning Image Processing and Computer Vision Image resolution Pattern Recognition Pattern Recognition and Graphics Spoofing Vision |
title | RGB Guided ToF Imaging System: A Survey of Deep Learning-Based Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RGB%20Guided%20ToF%20Imaging%20System:%20A%20Survey%20of%20Deep%20Learning-Based%20Methods&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Qiao,%20Xin&rft.date=2024-11-01&rft.volume=132&rft.issue=11&rft.spage=4954&rft.epage=4991&rft.pages=4954-4991&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-024-02089-5&rft_dat=%3Cproquest_cross%3E3121049249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121049249&rft_id=info:pmid/&rfr_iscdi=true |