Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries

Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer research 2024-11, Vol.31 (11), Article 326
Hauptverfasser: Zhang, Quanqi, Shi, Kanglong, Sun, Chuan, Wen, Wen, Han, Shuai, Zhao, Qing-Chao, Li, Yongpeng, Sui, Zhuyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of polymer research
container_volume 31
creator Zhang, Quanqi
Shi, Kanglong
Sun, Chuan
Wen, Wen
Han, Shuai
Zhao, Qing-Chao
Li, Yongpeng
Sui, Zhuyin
description Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m 2  g –1 ). In a 500 mg L –1 NaCl solution, it has an electrosorption capacity of 12.9 mg g –1 at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g –1 after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries.
doi_str_mv 10.1007/s10965-024-04180-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120898863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120898863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d483a018426eebfc645713a85575bbe87ada336b8cdd7ad37966458f84a84c703</originalsourceid><addsrcrecordid>eNp9kM1KxDAURosoOI6-gKuC6-pNkzbpUgb_YNCNrkOaptqh09SbVBhx4Tv4hj6JV0dw5-peknO-kC9JjhmcMgB5FhhUZZFBLjIQTEEmdpIZK2SeqYoXu7RDnmeVLGE_OQhhBVAUslSz5O3WDD5EnGyc0DXp6NFPIbUGaz-kjcPuhU5b9Gu66jfjBtH3Lh3Iwq4mJqStR-JHY7tIMDmdH7pXE2mkZmjSvotP3bT-fP8IU99OmNYmRgp24TDZa00f3NHvnCcPlxf3i-tseXd1szhfZjYHiFkjFDfAlMhL5-rWlqKQjBtFXyjq2ilpGsN5WSvbNLRzWZWEqFYJo4SVwOfJyTZ3RP88uRD1yk840JOasxxUpVTJicq3lEUfArpWj9itDW40A_3dst62rKll_dOyFiTxrRQIHh4d_kX_Y30Bi6uEfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120898863</pqid></control><display><type>article</type><title>Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Quanqi ; Shi, Kanglong ; Sun, Chuan ; Wen, Wen ; Han, Shuai ; Zhao, Qing-Chao ; Li, Yongpeng ; Sui, Zhuyin</creator><creatorcontrib>Zhang, Quanqi ; Shi, Kanglong ; Sun, Chuan ; Wen, Wen ; Han, Shuai ; Zhao, Qing-Chao ; Li, Yongpeng ; Sui, Zhuyin</creatorcontrib><description>Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m 2  g –1 ). In a 500 mg L –1 NaCl solution, it has an electrosorption capacity of 12.9 mg g –1 at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g –1 after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-024-04180-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Addition polymerization ; Carbon ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Controllability ; Deionization ; Electrochemical analysis ; Electrode materials ; Energy utilization ; Industrial Chemistry/Chemical Engineering ; Lithium ; Lithium sulfur batteries ; Morphology ; Nanoribbons ; Nanostructure ; Original Paper ; Oxidizing agents ; Polymer Sciences ; Polypyrroles ; Stability ; Sulfur ; Surface area</subject><ispartof>Journal of polymer research, 2024-11, Vol.31 (11), Article 326</ispartof><rights>The Polymer Society, Taipei 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d483a018426eebfc645713a85575bbe87ada336b8cdd7ad37966458f84a84c703</cites><orcidid>0000-0003-1052-8688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-024-04180-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-024-04180-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Quanqi</creatorcontrib><creatorcontrib>Shi, Kanglong</creatorcontrib><creatorcontrib>Sun, Chuan</creatorcontrib><creatorcontrib>Wen, Wen</creatorcontrib><creatorcontrib>Han, Shuai</creatorcontrib><creatorcontrib>Zhao, Qing-Chao</creatorcontrib><creatorcontrib>Li, Yongpeng</creatorcontrib><creatorcontrib>Sui, Zhuyin</creatorcontrib><title>Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m 2  g –1 ). In a 500 mg L –1 NaCl solution, it has an electrosorption capacity of 12.9 mg g –1 at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g –1 after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries.</description><subject>Addition polymerization</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Controllability</subject><subject>Deionization</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Energy utilization</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Morphology</subject><subject>Nanoribbons</subject><subject>Nanostructure</subject><subject>Original Paper</subject><subject>Oxidizing agents</subject><subject>Polymer Sciences</subject><subject>Polypyrroles</subject><subject>Stability</subject><subject>Sulfur</subject><subject>Surface area</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURosoOI6-gKuC6-pNkzbpUgb_YNCNrkOaptqh09SbVBhx4Tv4hj6JV0dw5-peknO-kC9JjhmcMgB5FhhUZZFBLjIQTEEmdpIZK2SeqYoXu7RDnmeVLGE_OQhhBVAUslSz5O3WDD5EnGyc0DXp6NFPIbUGaz-kjcPuhU5b9Gu66jfjBtH3Lh3Iwq4mJqStR-JHY7tIMDmdH7pXE2mkZmjSvotP3bT-fP8IU99OmNYmRgp24TDZa00f3NHvnCcPlxf3i-tseXd1szhfZjYHiFkjFDfAlMhL5-rWlqKQjBtFXyjq2ilpGsN5WSvbNLRzWZWEqFYJo4SVwOfJyTZ3RP88uRD1yk840JOasxxUpVTJicq3lEUfArpWj9itDW40A_3dst62rKll_dOyFiTxrRQIHh4d_kX_Y30Bi6uEfw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Quanqi</creator><creator>Shi, Kanglong</creator><creator>Sun, Chuan</creator><creator>Wen, Wen</creator><creator>Han, Shuai</creator><creator>Zhao, Qing-Chao</creator><creator>Li, Yongpeng</creator><creator>Sui, Zhuyin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1052-8688</orcidid></search><sort><creationdate>20241101</creationdate><title>Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries</title><author>Zhang, Quanqi ; Shi, Kanglong ; Sun, Chuan ; Wen, Wen ; Han, Shuai ; Zhao, Qing-Chao ; Li, Yongpeng ; Sui, Zhuyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d483a018426eebfc645713a85575bbe87ada336b8cdd7ad37966458f84a84c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Addition polymerization</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Controllability</topic><topic>Deionization</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Energy utilization</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Morphology</topic><topic>Nanoribbons</topic><topic>Nanostructure</topic><topic>Original Paper</topic><topic>Oxidizing agents</topic><topic>Polymer Sciences</topic><topic>Polypyrroles</topic><topic>Stability</topic><topic>Sulfur</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Quanqi</creatorcontrib><creatorcontrib>Shi, Kanglong</creatorcontrib><creatorcontrib>Sun, Chuan</creatorcontrib><creatorcontrib>Wen, Wen</creatorcontrib><creatorcontrib>Han, Shuai</creatorcontrib><creatorcontrib>Zhao, Qing-Chao</creatorcontrib><creatorcontrib>Li, Yongpeng</creatorcontrib><creatorcontrib>Sui, Zhuyin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Quanqi</au><au>Shi, Kanglong</au><au>Sun, Chuan</au><au>Wen, Wen</au><au>Han, Shuai</au><au>Zhao, Qing-Chao</au><au>Li, Yongpeng</au><au>Sui, Zhuyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>31</volume><issue>11</issue><artnum>326</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m 2  g –1 ). In a 500 mg L –1 NaCl solution, it has an electrosorption capacity of 12.9 mg g –1 at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g –1 after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-024-04180-4</doi><orcidid>https://orcid.org/0000-0003-1052-8688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-9760
ispartof Journal of polymer research, 2024-11, Vol.31 (11), Article 326
issn 1022-9760
1572-8935
language eng
recordid cdi_proquest_journals_3120898863
source Springer Nature - Complete Springer Journals
subjects Addition polymerization
Carbon
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Controllability
Deionization
Electrochemical analysis
Electrode materials
Energy utilization
Industrial Chemistry/Chemical Engineering
Lithium
Lithium sulfur batteries
Morphology
Nanoribbons
Nanostructure
Original Paper
Oxidizing agents
Polymer Sciences
Polypyrroles
Stability
Sulfur
Surface area
title Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20porous%20carbon%20derived%20from%20polypyrrole%20nanoribbons%20for%20capacitive%20deionization%20and%20lithium%E2%80%93sulfur%20batteries&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Zhang,%20Quanqi&rft.date=2024-11-01&rft.volume=31&rft.issue=11&rft.artnum=326&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-024-04180-4&rft_dat=%3Cproquest_cross%3E3120898863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120898863&rft_id=info:pmid/&rfr_iscdi=true