Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries
Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work,...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2024-11, Vol.31 (11), Article 326 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of polymer research |
container_volume | 31 |
creator | Zhang, Quanqi Shi, Kanglong Sun, Chuan Wen, Wen Han, Shuai Zhao, Qing-Chao Li, Yongpeng Sui, Zhuyin |
description | Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m
2
g
–1
). In a 500 mg L
–1
NaCl solution, it has an electrosorption capacity of 12.9 mg g
–1
at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g
–1
after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries. |
doi_str_mv | 10.1007/s10965-024-04180-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120898863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120898863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d483a018426eebfc645713a85575bbe87ada336b8cdd7ad37966458f84a84c703</originalsourceid><addsrcrecordid>eNp9kM1KxDAURosoOI6-gKuC6-pNkzbpUgb_YNCNrkOaptqh09SbVBhx4Tv4hj6JV0dw5-peknO-kC9JjhmcMgB5FhhUZZFBLjIQTEEmdpIZK2SeqYoXu7RDnmeVLGE_OQhhBVAUslSz5O3WDD5EnGyc0DXp6NFPIbUGaz-kjcPuhU5b9Gu66jfjBtH3Lh3Iwq4mJqStR-JHY7tIMDmdH7pXE2mkZmjSvotP3bT-fP8IU99OmNYmRgp24TDZa00f3NHvnCcPlxf3i-tseXd1szhfZjYHiFkjFDfAlMhL5-rWlqKQjBtFXyjq2ilpGsN5WSvbNLRzWZWEqFYJo4SVwOfJyTZ3RP88uRD1yk840JOasxxUpVTJicq3lEUfArpWj9itDW40A_3dst62rKll_dOyFiTxrRQIHh4d_kX_Y30Bi6uEfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120898863</pqid></control><display><type>article</type><title>Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Quanqi ; Shi, Kanglong ; Sun, Chuan ; Wen, Wen ; Han, Shuai ; Zhao, Qing-Chao ; Li, Yongpeng ; Sui, Zhuyin</creator><creatorcontrib>Zhang, Quanqi ; Shi, Kanglong ; Sun, Chuan ; Wen, Wen ; Han, Shuai ; Zhao, Qing-Chao ; Li, Yongpeng ; Sui, Zhuyin</creatorcontrib><description>Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m
2
g
–1
). In a 500 mg L
–1
NaCl solution, it has an electrosorption capacity of 12.9 mg g
–1
at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g
–1
after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries.</description><identifier>ISSN: 1022-9760</identifier><identifier>EISSN: 1572-8935</identifier><identifier>DOI: 10.1007/s10965-024-04180-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Addition polymerization ; Carbon ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Controllability ; Deionization ; Electrochemical analysis ; Electrode materials ; Energy utilization ; Industrial Chemistry/Chemical Engineering ; Lithium ; Lithium sulfur batteries ; Morphology ; Nanoribbons ; Nanostructure ; Original Paper ; Oxidizing agents ; Polymer Sciences ; Polypyrroles ; Stability ; Sulfur ; Surface area</subject><ispartof>Journal of polymer research, 2024-11, Vol.31 (11), Article 326</ispartof><rights>The Polymer Society, Taipei 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d483a018426eebfc645713a85575bbe87ada336b8cdd7ad37966458f84a84c703</cites><orcidid>0000-0003-1052-8688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10965-024-04180-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10965-024-04180-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Quanqi</creatorcontrib><creatorcontrib>Shi, Kanglong</creatorcontrib><creatorcontrib>Sun, Chuan</creatorcontrib><creatorcontrib>Wen, Wen</creatorcontrib><creatorcontrib>Han, Shuai</creatorcontrib><creatorcontrib>Zhao, Qing-Chao</creatorcontrib><creatorcontrib>Li, Yongpeng</creatorcontrib><creatorcontrib>Sui, Zhuyin</creatorcontrib><title>Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries</title><title>Journal of polymer research</title><addtitle>J Polym Res</addtitle><description>Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m
2
g
–1
). In a 500 mg L
–1
NaCl solution, it has an electrosorption capacity of 12.9 mg g
–1
at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g
–1
after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries.</description><subject>Addition polymerization</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Controllability</subject><subject>Deionization</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Energy utilization</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Morphology</subject><subject>Nanoribbons</subject><subject>Nanostructure</subject><subject>Original Paper</subject><subject>Oxidizing agents</subject><subject>Polymer Sciences</subject><subject>Polypyrroles</subject><subject>Stability</subject><subject>Sulfur</subject><subject>Surface area</subject><issn>1022-9760</issn><issn>1572-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURosoOI6-gKuC6-pNkzbpUgb_YNCNrkOaptqh09SbVBhx4Tv4hj6JV0dw5-peknO-kC9JjhmcMgB5FhhUZZFBLjIQTEEmdpIZK2SeqYoXu7RDnmeVLGE_OQhhBVAUslSz5O3WDD5EnGyc0DXp6NFPIbUGaz-kjcPuhU5b9Gu66jfjBtH3Lh3Iwq4mJqStR-JHY7tIMDmdH7pXE2mkZmjSvotP3bT-fP8IU99OmNYmRgp24TDZa00f3NHvnCcPlxf3i-tseXd1szhfZjYHiFkjFDfAlMhL5-rWlqKQjBtFXyjq2ilpGsN5WSvbNLRzWZWEqFYJo4SVwOfJyTZ3RP88uRD1yk840JOasxxUpVTJicq3lEUfArpWj9itDW40A_3dst62rKll_dOyFiTxrRQIHh4d_kX_Y30Bi6uEfw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Quanqi</creator><creator>Shi, Kanglong</creator><creator>Sun, Chuan</creator><creator>Wen, Wen</creator><creator>Han, Shuai</creator><creator>Zhao, Qing-Chao</creator><creator>Li, Yongpeng</creator><creator>Sui, Zhuyin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1052-8688</orcidid></search><sort><creationdate>20241101</creationdate><title>Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries</title><author>Zhang, Quanqi ; Shi, Kanglong ; Sun, Chuan ; Wen, Wen ; Han, Shuai ; Zhao, Qing-Chao ; Li, Yongpeng ; Sui, Zhuyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d483a018426eebfc645713a85575bbe87ada336b8cdd7ad37966458f84a84c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Addition polymerization</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Controllability</topic><topic>Deionization</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Energy utilization</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Morphology</topic><topic>Nanoribbons</topic><topic>Nanostructure</topic><topic>Original Paper</topic><topic>Oxidizing agents</topic><topic>Polymer Sciences</topic><topic>Polypyrroles</topic><topic>Stability</topic><topic>Sulfur</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Quanqi</creatorcontrib><creatorcontrib>Shi, Kanglong</creatorcontrib><creatorcontrib>Sun, Chuan</creatorcontrib><creatorcontrib>Wen, Wen</creatorcontrib><creatorcontrib>Han, Shuai</creatorcontrib><creatorcontrib>Zhao, Qing-Chao</creatorcontrib><creatorcontrib>Li, Yongpeng</creatorcontrib><creatorcontrib>Sui, Zhuyin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Quanqi</au><au>Shi, Kanglong</au><au>Sun, Chuan</au><au>Wen, Wen</au><au>Han, Shuai</au><au>Zhao, Qing-Chao</au><au>Li, Yongpeng</au><au>Sui, Zhuyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries</atitle><jtitle>Journal of polymer research</jtitle><stitle>J Polym Res</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>31</volume><issue>11</issue><artnum>326</artnum><issn>1022-9760</issn><eissn>1572-8935</eissn><abstract>Nanostructured porous carbons, with its high specific surface area, rich pore structure, excellent conductivity and chemical stability, have become an excellent electrode material in advanced energy utilization technologies such as capacitive deionization and lithium–sulfur batteries. In this work, by controlling the concentration of oxidants and the addition of surfactants during the oxidative polymerization of pyrrole, the morphology and size of polypyrrole can be regulated. Nanostructured porous carbons with controllable morphology were successfully prepared by steam activation of polypyrrole particles and nanoribbons. In capacitive deionization experiment, the synthesized nanostructured carbon nanoribbon (NCNR) exhibits excellent electrochemical properties due to their rich pore structure and large surface area (1258 m
2
g
–1
). In a 500 mg L
–1
NaCl solution, it has an electrosorption capacity of 12.9 mg g
–1
at 1.2 V. In addition, when NCNR is used as a host material for sulfur in lithium–sulfur batteries, it exhibits significantly improved discharge capacity and excellent cycling stability (maintaining a capacity of 672 mA h g
–1
after 200 cycles at a rate of 0.5 C), providing new ideas for solving the problems of capacity degradation faced by lithium–sulfur batteries.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10965-024-04180-4</doi><orcidid>https://orcid.org/0000-0003-1052-8688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-9760 |
ispartof | Journal of polymer research, 2024-11, Vol.31 (11), Article 326 |
issn | 1022-9760 1572-8935 |
language | eng |
recordid | cdi_proquest_journals_3120898863 |
source | Springer Nature - Complete Springer Journals |
subjects | Addition polymerization Carbon Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Controllability Deionization Electrochemical analysis Electrode materials Energy utilization Industrial Chemistry/Chemical Engineering Lithium Lithium sulfur batteries Morphology Nanoribbons Nanostructure Original Paper Oxidizing agents Polymer Sciences Polypyrroles Stability Sulfur Surface area |
title | Nanostructured porous carbon derived from polypyrrole nanoribbons for capacitive deionization and lithium–sulfur batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20porous%20carbon%20derived%20from%20polypyrrole%20nanoribbons%20for%20capacitive%20deionization%20and%20lithium%E2%80%93sulfur%20batteries&rft.jtitle=Journal%20of%20polymer%20research&rft.au=Zhang,%20Quanqi&rft.date=2024-11-01&rft.volume=31&rft.issue=11&rft.artnum=326&rft.issn=1022-9760&rft.eissn=1572-8935&rft_id=info:doi/10.1007/s10965-024-04180-4&rft_dat=%3Cproquest_cross%3E3120898863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120898863&rft_id=info:pmid/&rfr_iscdi=true |