Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network
Pipeline leakage, which leads to water wastage, financial losses, and contamination, is a significant challenge in urban water supply networks. Leak detection and prediction is urgent to secure the safety of the water supply system. Relaying on deep learning artificial neural networks and a specific...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-10, Vol.16 (20), p.2903 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 2903 |
container_title | Water (Basel) |
container_volume | 16 |
creator | Xi, Fei Liu, Luyi Shan, Liyu Liu, Bingjun Qi, Yuanfeng |
description | Pipeline leakage, which leads to water wastage, financial losses, and contamination, is a significant challenge in urban water supply networks. Leak detection and prediction is urgent to secure the safety of the water supply system. Relaying on deep learning artificial neural networks and a specific optimization algorithm, an intelligential detection approach in identifying the pipeline leaks is proposed. A hydraulic model is initially constructed on the simplified Net2 benchmark pipe network. The District Metering Area (DMA) algorithm and the Cuckoo Search (CS) algorithm are integrated as the DMA-CS algorithm, which is employed for the hydraulic model optimization. Attributing to the suspected leak area identification and the exact leak location, the DMA-CS algorithm possess higher accuracy for pipeline leakage (97.43%) than that of the DMA algorithm (92.67%). The identification pattern of leakage nodes is correlated to the maximum number of leakage points set with the participation of the DMA-CS algorithm, which provide a more accurate pathway for identifying and predicting the specific pipeline leaks. |
doi_str_mv | 10.3390/w16202903 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120813575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814422239</galeid><sourcerecordid>A814422239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-5c2f0d5978f509c60a2b9de6561b88cbd30bcc09f75cd18f40a2a0459be9acd13</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVIUDf2CJE4cWP-IkPlblVamCSqXiGDnOurhNneA4qnrg33FThNg97O5oZvYwUXRD8Jgxge_3JKGYCszOogHFKRvFcUzO_-2X0XXbbnCoWGQZx4Poe2EaqIwFNAe5RbMSrDfaKOlNbZG0JVo4KI3qz1qjlSukRR_Sg0PLrmmqA3oFv6_dFi0PrYcd2hv_iR4AmqOjs8au0cT1nkZWgdy5fvSaq-hCy6qF6985jFZPj-_Tl9H87Xk2ncxHilLiR1xRjUsu0kxzLFSCJS1ECQlPSJFlqigZLpTCQqdclSTTcSBIHHNRgJABYcPo9uTbuPqrg9bnm7pzNrzMGaE4I4ynPLDGJ9ZaVpAbq2vvpApdws6o2oI2AZ9kJI4ppUwEwd1JoFzdtg503jizk-6QE5wfE8n_EmE_cLR-LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120813575</pqid></control><display><type>article</type><title>Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xi, Fei ; Liu, Luyi ; Shan, Liyu ; Liu, Bingjun ; Qi, Yuanfeng</creator><creatorcontrib>Xi, Fei ; Liu, Luyi ; Shan, Liyu ; Liu, Bingjun ; Qi, Yuanfeng</creatorcontrib><description>Pipeline leakage, which leads to water wastage, financial losses, and contamination, is a significant challenge in urban water supply networks. Leak detection and prediction is urgent to secure the safety of the water supply system. Relaying on deep learning artificial neural networks and a specific optimization algorithm, an intelligential detection approach in identifying the pipeline leaks is proposed. A hydraulic model is initially constructed on the simplified Net2 benchmark pipe network. The District Metering Area (DMA) algorithm and the Cuckoo Search (CS) algorithm are integrated as the DMA-CS algorithm, which is employed for the hydraulic model optimization. Attributing to the suspected leak area identification and the exact leak location, the DMA-CS algorithm possess higher accuracy for pipeline leakage (97.43%) than that of the DMA algorithm (92.67%). The identification pattern of leakage nodes is correlated to the maximum number of leakage points set with the participation of the DMA-CS algorithm, which provide a more accurate pathway for identifying and predicting the specific pipeline leaks.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16202903</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; China ; Costs ; Deep learning ; Design and construction ; Efficiency ; Fiber optics ; Genetic algorithms ; Identification ; Leak detection ; Localization ; Mathematical optimization ; Methods ; Neural networks ; Optimization algorithms ; Pipe lines ; Pipelines ; Sensors ; Urban development ; Water shortages ; Water supply</subject><ispartof>Water (Basel), 2024-10, Vol.16 (20), p.2903</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-5c2f0d5978f509c60a2b9de6561b88cbd30bcc09f75cd18f40a2a0459be9acd13</cites><orcidid>0000-0003-3130-5774 ; 0000-0002-9393-0674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xi, Fei</creatorcontrib><creatorcontrib>Liu, Luyi</creatorcontrib><creatorcontrib>Shan, Liyu</creatorcontrib><creatorcontrib>Liu, Bingjun</creatorcontrib><creatorcontrib>Qi, Yuanfeng</creatorcontrib><title>Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network</title><title>Water (Basel)</title><description>Pipeline leakage, which leads to water wastage, financial losses, and contamination, is a significant challenge in urban water supply networks. Leak detection and prediction is urgent to secure the safety of the water supply system. Relaying on deep learning artificial neural networks and a specific optimization algorithm, an intelligential detection approach in identifying the pipeline leaks is proposed. A hydraulic model is initially constructed on the simplified Net2 benchmark pipe network. The District Metering Area (DMA) algorithm and the Cuckoo Search (CS) algorithm are integrated as the DMA-CS algorithm, which is employed for the hydraulic model optimization. Attributing to the suspected leak area identification and the exact leak location, the DMA-CS algorithm possess higher accuracy for pipeline leakage (97.43%) than that of the DMA algorithm (92.67%). The identification pattern of leakage nodes is correlated to the maximum number of leakage points set with the participation of the DMA-CS algorithm, which provide a more accurate pathway for identifying and predicting the specific pipeline leaks.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>China</subject><subject>Costs</subject><subject>Deep learning</subject><subject>Design and construction</subject><subject>Efficiency</subject><subject>Fiber optics</subject><subject>Genetic algorithms</subject><subject>Identification</subject><subject>Leak detection</subject><subject>Localization</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Pipe lines</subject><subject>Pipelines</subject><subject>Sensors</subject><subject>Urban development</subject><subject>Water shortages</subject><subject>Water supply</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUctOwzAQjBBIVIUDf2CJE4cWP-IkPlblVamCSqXiGDnOurhNneA4qnrg33FThNg97O5oZvYwUXRD8Jgxge_3JKGYCszOogHFKRvFcUzO_-2X0XXbbnCoWGQZx4Poe2EaqIwFNAe5RbMSrDfaKOlNbZG0JVo4KI3qz1qjlSukRR_Sg0PLrmmqA3oFv6_dFi0PrYcd2hv_iR4AmqOjs8au0cT1nkZWgdy5fvSaq-hCy6qF6985jFZPj-_Tl9H87Xk2ncxHilLiR1xRjUsu0kxzLFSCJS1ECQlPSJFlqigZLpTCQqdclSTTcSBIHHNRgJABYcPo9uTbuPqrg9bnm7pzNrzMGaE4I4ynPLDGJ9ZaVpAbq2vvpApdws6o2oI2AZ9kJI4ppUwEwd1JoFzdtg503jizk-6QE5wfE8n_EmE_cLR-LQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Xi, Fei</creator><creator>Liu, Luyi</creator><creator>Shan, Liyu</creator><creator>Liu, Bingjun</creator><creator>Qi, Yuanfeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3130-5774</orcidid><orcidid>https://orcid.org/0000-0002-9393-0674</orcidid></search><sort><creationdate>20241001</creationdate><title>Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network</title><author>Xi, Fei ; Liu, Luyi ; Shan, Liyu ; Liu, Bingjun ; Qi, Yuanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-5c2f0d5978f509c60a2b9de6561b88cbd30bcc09f75cd18f40a2a0459be9acd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>China</topic><topic>Costs</topic><topic>Deep learning</topic><topic>Design and construction</topic><topic>Efficiency</topic><topic>Fiber optics</topic><topic>Genetic algorithms</topic><topic>Identification</topic><topic>Leak detection</topic><topic>Localization</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Pipe lines</topic><topic>Pipelines</topic><topic>Sensors</topic><topic>Urban development</topic><topic>Water shortages</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Fei</creatorcontrib><creatorcontrib>Liu, Luyi</creatorcontrib><creatorcontrib>Shan, Liyu</creatorcontrib><creatorcontrib>Liu, Bingjun</creatorcontrib><creatorcontrib>Qi, Yuanfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Fei</au><au>Liu, Luyi</au><au>Shan, Liyu</au><au>Liu, Bingjun</au><au>Qi, Yuanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network</atitle><jtitle>Water (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>2903</spage><pages>2903-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Pipeline leakage, which leads to water wastage, financial losses, and contamination, is a significant challenge in urban water supply networks. Leak detection and prediction is urgent to secure the safety of the water supply system. Relaying on deep learning artificial neural networks and a specific optimization algorithm, an intelligential detection approach in identifying the pipeline leaks is proposed. A hydraulic model is initially constructed on the simplified Net2 benchmark pipe network. The District Metering Area (DMA) algorithm and the Cuckoo Search (CS) algorithm are integrated as the DMA-CS algorithm, which is employed for the hydraulic model optimization. Attributing to the suspected leak area identification and the exact leak location, the DMA-CS algorithm possess higher accuracy for pipeline leakage (97.43%) than that of the DMA algorithm (92.67%). The identification pattern of leakage nodes is correlated to the maximum number of leakage points set with the participation of the DMA-CS algorithm, which provide a more accurate pathway for identifying and predicting the specific pipeline leaks.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16202903</doi><orcidid>https://orcid.org/0000-0003-3130-5774</orcidid><orcidid>https://orcid.org/0000-0002-9393-0674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2024-10, Vol.16 (20), p.2903 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_3120813575 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Artificial intelligence China Costs Deep learning Design and construction Efficiency Fiber optics Genetic algorithms Identification Leak detection Localization Mathematical optimization Methods Neural networks Optimization algorithms Pipe lines Pipelines Sensors Urban development Water shortages Water supply |
title | Pipeline Leak Identification and Prediction of Urban Water Supply Network System with Deep Learning Artificial Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pipeline%20Leak%20Identification%20and%20Prediction%20of%20Urban%20Water%20Supply%20Network%20System%20with%20Deep%20Learning%20Artificial%20Neural%20Network&rft.jtitle=Water%20(Basel)&rft.au=Xi,%20Fei&rft.date=2024-10-01&rft.volume=16&rft.issue=20&rft.spage=2903&rft.pages=2903-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16202903&rft_dat=%3Cgale_proqu%3EA814422239%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120813575&rft_id=info:pmid/&rft_galeid=A814422239&rfr_iscdi=true |