All Deforestation Matters: Deforestation Alert System for the Caatinga Biome in South America’s Tropical Dry Forest
This study provides a comprehensive overview of Phase I of the deforestation dryland alert system. It focuses on its operation and outcomes from 2020 to 2022 in the Caatinga biome, a unique Brazilian dryland ecosystem. The primary objectives were to analyze deforestation dynamics, identify areas wit...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-10, Vol.16 (20), p.9006 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 9006 |
container_title | Sustainability |
container_volume | 16 |
creator | Costa, Diego Pereira Lentini, Carlos A. D Cunha Lima, André T Duverger, Soltan Galano Vasconcelos, Rodrigo N Herrmann, Stefanie M Ferreira-Ferreira, Jefferson Oliveira, Mariana da Silva Barbosa, Leonardo Cordeiro, Carlos Leandro Santos, Nerivaldo Afonso Franca Rocha, Rafael Oliveira Souza, Deorgia T. M Franca Rocha, Washington J. S |
description | This study provides a comprehensive overview of Phase I of the deforestation dryland alert system. It focuses on its operation and outcomes from 2020 to 2022 in the Caatinga biome, a unique Brazilian dryland ecosystem. The primary objectives were to analyze deforestation dynamics, identify areas with highest deforestation rates, and determine regions that require prioritization for anti-deforestation efforts and conservation actions. The research methodology involved utilizing remote sensing data, including Landsat imagery, processed through the Google Earth Engine platform. The data were analyzed using spectral unmixing, adjusted Normalized Difference Fraction Index, and harmonic time series models to generate monthly deforestation alerts. The findings reveal a significant increase in deforestation alerts and deforested areas over the study period, with a 148% rise in alerts from 2020 to 2022. The Caatinga biome was identified as the second highest in detected deforestation alerts in Brazil in 2022, accounting for 18.4% of total alerts. Hexagonal assessments illustrate diverse vegetation cover and alert distribution, enabling targeted conservation efforts. The Bivariate Choropleth Map demonstrates the nuanced relationship between alert and vegetation cover, guiding prioritization for deforestation control and native vegetation restoration. The analysis also highlighted the spatial heterogeneity of deforestation, with most deforestation events occurring in small patches, averaging 10.9 ha. The study concludes that while the dryland alert system (SAD-Caatinga—Phase I) has effectively detected deforestation, ongoing challenges such as cloud cover, seasonality, and more frequent and precise monitoring persist. The implementation of DDAS plays a critical role in sustainable forestry by enabling the prompt detection of deforestation, which supports targeted interventions, helps contain the process, and provides decision makers with early insights to distinguish between legal and illegal practices. These capabilities inform decision-making processes and promote sustainable forest management in dryland ecosystems. Future improvements, including using higher-resolution imagery and artificial intelligence for validation, are essential to detect smaller deforestation alerts, reduce manual efforts, and support sustainable dryland management in the Caatinga biome. |
doi_str_mv | 10.3390/su16209006 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120808646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814420468</galeid><sourcerecordid>A814420468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-13c662a2b51f2a962dd1e2dc7610ee337d6c63c355481250a4950a980338a1c83</originalsourceid><addsrcrecordid>eNpdkc9KAzEQxoMoWGovPkHAk0Jr_uymu97WarVQEWw9h5idbbfsbmqSBXvzNXw9n8TUClozkAwzv3wfwyB0SsmA85RcupYKRlJCxAHqMDKkfUpicvgnP0Y951YkHM5pSkUHtVlV4RsojAXnlS9Ngx-U92Dd1b9yVoH1eLZxHmocGtgvAY9UaDYLha9LUwMuGzwzrV_irAZbavX5_uHw3Jp1yION3eDxt-IJOipU5aD383bR8_h2PrrvTx_vJqNs2teMUd-nXAvBFHuJacFUKlieU2C5HgpKADgf5kILrnkcRwllMVFRGq40CdMliuqEd9HZTndtzWsbjOXKtLYJlpJTRhKSiEgEarCjFqoCWTaF8VbpEDnUpTYNFGWoZwmNIkYisZU93_sQGA9vfqFa5-Rk9rTPXuxYbY1zFgq5tmWt7EZSIrdrk79r418Unoit</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120808646</pqid></control><display><type>article</type><title>All Deforestation Matters: Deforestation Alert System for the Caatinga Biome in South America’s Tropical Dry Forest</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Costa, Diego Pereira ; Lentini, Carlos A. D ; Cunha Lima, André T ; Duverger, Soltan Galano ; Vasconcelos, Rodrigo N ; Herrmann, Stefanie M ; Ferreira-Ferreira, Jefferson ; Oliveira, Mariana ; da Silva Barbosa, Leonardo ; Cordeiro, Carlos Leandro ; Santos, Nerivaldo Afonso ; Franca Rocha, Rafael Oliveira ; Souza, Deorgia T. M ; Franca Rocha, Washington J. S</creator><creatorcontrib>Costa, Diego Pereira ; Lentini, Carlos A. D ; Cunha Lima, André T ; Duverger, Soltan Galano ; Vasconcelos, Rodrigo N ; Herrmann, Stefanie M ; Ferreira-Ferreira, Jefferson ; Oliveira, Mariana ; da Silva Barbosa, Leonardo ; Cordeiro, Carlos Leandro ; Santos, Nerivaldo Afonso ; Franca Rocha, Rafael Oliveira ; Souza, Deorgia T. M ; Franca Rocha, Washington J. S</creatorcontrib><description>This study provides a comprehensive overview of Phase I of the deforestation dryland alert system. It focuses on its operation and outcomes from 2020 to 2022 in the Caatinga biome, a unique Brazilian dryland ecosystem. The primary objectives were to analyze deforestation dynamics, identify areas with highest deforestation rates, and determine regions that require prioritization for anti-deforestation efforts and conservation actions. The research methodology involved utilizing remote sensing data, including Landsat imagery, processed through the Google Earth Engine platform. The data were analyzed using spectral unmixing, adjusted Normalized Difference Fraction Index, and harmonic time series models to generate monthly deforestation alerts. The findings reveal a significant increase in deforestation alerts and deforested areas over the study period, with a 148% rise in alerts from 2020 to 2022. The Caatinga biome was identified as the second highest in detected deforestation alerts in Brazil in 2022, accounting for 18.4% of total alerts. Hexagonal assessments illustrate diverse vegetation cover and alert distribution, enabling targeted conservation efforts. The Bivariate Choropleth Map demonstrates the nuanced relationship between alert and vegetation cover, guiding prioritization for deforestation control and native vegetation restoration. The analysis also highlighted the spatial heterogeneity of deforestation, with most deforestation events occurring in small patches, averaging 10.9 ha. The study concludes that while the dryland alert system (SAD-Caatinga—Phase I) has effectively detected deforestation, ongoing challenges such as cloud cover, seasonality, and more frequent and precise monitoring persist. The implementation of DDAS plays a critical role in sustainable forestry by enabling the prompt detection of deforestation, which supports targeted interventions, helps contain the process, and provides decision makers with early insights to distinguish between legal and illegal practices. These capabilities inform decision-making processes and promote sustainable forest management in dryland ecosystems. Future improvements, including using higher-resolution imagery and artificial intelligence for validation, are essential to detect smaller deforestation alerts, reduce manual efforts, and support sustainable dryland management in the Caatinga biome.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16209006</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural management ; Arid regions ecology ; Brazil ; Carbon ; Climate change ; Deforestation ; Ecosystems ; Forests ; Land use ; Landsat satellites ; Management ; Population growth ; Precipitation ; Remote sensing ; Trends ; Vegetation</subject><ispartof>Sustainability, 2024-10, Vol.16 (20), p.9006</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-13c662a2b51f2a962dd1e2dc7610ee337d6c63c355481250a4950a980338a1c83</cites><orcidid>0000-0002-2175-2792 ; 0000-0002-5117-898X ; 0000-0002-3153-3841 ; 0000-0003-0406-1006 ; 0000-0002-6164-0138 ; 0000-0003-2582-4391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Costa, Diego Pereira</creatorcontrib><creatorcontrib>Lentini, Carlos A. D</creatorcontrib><creatorcontrib>Cunha Lima, André T</creatorcontrib><creatorcontrib>Duverger, Soltan Galano</creatorcontrib><creatorcontrib>Vasconcelos, Rodrigo N</creatorcontrib><creatorcontrib>Herrmann, Stefanie M</creatorcontrib><creatorcontrib>Ferreira-Ferreira, Jefferson</creatorcontrib><creatorcontrib>Oliveira, Mariana</creatorcontrib><creatorcontrib>da Silva Barbosa, Leonardo</creatorcontrib><creatorcontrib>Cordeiro, Carlos Leandro</creatorcontrib><creatorcontrib>Santos, Nerivaldo Afonso</creatorcontrib><creatorcontrib>Franca Rocha, Rafael Oliveira</creatorcontrib><creatorcontrib>Souza, Deorgia T. M</creatorcontrib><creatorcontrib>Franca Rocha, Washington J. S</creatorcontrib><title>All Deforestation Matters: Deforestation Alert System for the Caatinga Biome in South America’s Tropical Dry Forest</title><title>Sustainability</title><description>This study provides a comprehensive overview of Phase I of the deforestation dryland alert system. It focuses on its operation and outcomes from 2020 to 2022 in the Caatinga biome, a unique Brazilian dryland ecosystem. The primary objectives were to analyze deforestation dynamics, identify areas with highest deforestation rates, and determine regions that require prioritization for anti-deforestation efforts and conservation actions. The research methodology involved utilizing remote sensing data, including Landsat imagery, processed through the Google Earth Engine platform. The data were analyzed using spectral unmixing, adjusted Normalized Difference Fraction Index, and harmonic time series models to generate monthly deforestation alerts. The findings reveal a significant increase in deforestation alerts and deforested areas over the study period, with a 148% rise in alerts from 2020 to 2022. The Caatinga biome was identified as the second highest in detected deforestation alerts in Brazil in 2022, accounting for 18.4% of total alerts. Hexagonal assessments illustrate diverse vegetation cover and alert distribution, enabling targeted conservation efforts. The Bivariate Choropleth Map demonstrates the nuanced relationship between alert and vegetation cover, guiding prioritization for deforestation control and native vegetation restoration. The analysis also highlighted the spatial heterogeneity of deforestation, with most deforestation events occurring in small patches, averaging 10.9 ha. The study concludes that while the dryland alert system (SAD-Caatinga—Phase I) has effectively detected deforestation, ongoing challenges such as cloud cover, seasonality, and more frequent and precise monitoring persist. The implementation of DDAS plays a critical role in sustainable forestry by enabling the prompt detection of deforestation, which supports targeted interventions, helps contain the process, and provides decision makers with early insights to distinguish between legal and illegal practices. These capabilities inform decision-making processes and promote sustainable forest management in dryland ecosystems. Future improvements, including using higher-resolution imagery and artificial intelligence for validation, are essential to detect smaller deforestation alerts, reduce manual efforts, and support sustainable dryland management in the Caatinga biome.</description><subject>Agricultural management</subject><subject>Arid regions ecology</subject><subject>Brazil</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Deforestation</subject><subject>Ecosystems</subject><subject>Forests</subject><subject>Land use</subject><subject>Landsat satellites</subject><subject>Management</subject><subject>Population growth</subject><subject>Precipitation</subject><subject>Remote sensing</subject><subject>Trends</subject><subject>Vegetation</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc9KAzEQxoMoWGovPkHAk0Jr_uymu97WarVQEWw9h5idbbfsbmqSBXvzNXw9n8TUClozkAwzv3wfwyB0SsmA85RcupYKRlJCxAHqMDKkfUpicvgnP0Y951YkHM5pSkUHtVlV4RsojAXnlS9Ngx-U92Dd1b9yVoH1eLZxHmocGtgvAY9UaDYLha9LUwMuGzwzrV_irAZbavX5_uHw3Jp1yION3eDxt-IJOipU5aD383bR8_h2PrrvTx_vJqNs2teMUd-nXAvBFHuJacFUKlieU2C5HgpKADgf5kILrnkcRwllMVFRGq40CdMliuqEd9HZTndtzWsbjOXKtLYJlpJTRhKSiEgEarCjFqoCWTaF8VbpEDnUpTYNFGWoZwmNIkYisZU93_sQGA9vfqFa5-Rk9rTPXuxYbY1zFgq5tmWt7EZSIrdrk79r418Unoit</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Costa, Diego Pereira</creator><creator>Lentini, Carlos A. D</creator><creator>Cunha Lima, André T</creator><creator>Duverger, Soltan Galano</creator><creator>Vasconcelos, Rodrigo N</creator><creator>Herrmann, Stefanie M</creator><creator>Ferreira-Ferreira, Jefferson</creator><creator>Oliveira, Mariana</creator><creator>da Silva Barbosa, Leonardo</creator><creator>Cordeiro, Carlos Leandro</creator><creator>Santos, Nerivaldo Afonso</creator><creator>Franca Rocha, Rafael Oliveira</creator><creator>Souza, Deorgia T. M</creator><creator>Franca Rocha, Washington J. S</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2175-2792</orcidid><orcidid>https://orcid.org/0000-0002-5117-898X</orcidid><orcidid>https://orcid.org/0000-0002-3153-3841</orcidid><orcidid>https://orcid.org/0000-0003-0406-1006</orcidid><orcidid>https://orcid.org/0000-0002-6164-0138</orcidid><orcidid>https://orcid.org/0000-0003-2582-4391</orcidid></search><sort><creationdate>20241001</creationdate><title>All Deforestation Matters: Deforestation Alert System for the Caatinga Biome in South America’s Tropical Dry Forest</title><author>Costa, Diego Pereira ; Lentini, Carlos A. D ; Cunha Lima, André T ; Duverger, Soltan Galano ; Vasconcelos, Rodrigo N ; Herrmann, Stefanie M ; Ferreira-Ferreira, Jefferson ; Oliveira, Mariana ; da Silva Barbosa, Leonardo ; Cordeiro, Carlos Leandro ; Santos, Nerivaldo Afonso ; Franca Rocha, Rafael Oliveira ; Souza, Deorgia T. M ; Franca Rocha, Washington J. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-13c662a2b51f2a962dd1e2dc7610ee337d6c63c355481250a4950a980338a1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural management</topic><topic>Arid regions ecology</topic><topic>Brazil</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Deforestation</topic><topic>Ecosystems</topic><topic>Forests</topic><topic>Land use</topic><topic>Landsat satellites</topic><topic>Management</topic><topic>Population growth</topic><topic>Precipitation</topic><topic>Remote sensing</topic><topic>Trends</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Diego Pereira</creatorcontrib><creatorcontrib>Lentini, Carlos A. D</creatorcontrib><creatorcontrib>Cunha Lima, André T</creatorcontrib><creatorcontrib>Duverger, Soltan Galano</creatorcontrib><creatorcontrib>Vasconcelos, Rodrigo N</creatorcontrib><creatorcontrib>Herrmann, Stefanie M</creatorcontrib><creatorcontrib>Ferreira-Ferreira, Jefferson</creatorcontrib><creatorcontrib>Oliveira, Mariana</creatorcontrib><creatorcontrib>da Silva Barbosa, Leonardo</creatorcontrib><creatorcontrib>Cordeiro, Carlos Leandro</creatorcontrib><creatorcontrib>Santos, Nerivaldo Afonso</creatorcontrib><creatorcontrib>Franca Rocha, Rafael Oliveira</creatorcontrib><creatorcontrib>Souza, Deorgia T. M</creatorcontrib><creatorcontrib>Franca Rocha, Washington J. S</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Diego Pereira</au><au>Lentini, Carlos A. D</au><au>Cunha Lima, André T</au><au>Duverger, Soltan Galano</au><au>Vasconcelos, Rodrigo N</au><au>Herrmann, Stefanie M</au><au>Ferreira-Ferreira, Jefferson</au><au>Oliveira, Mariana</au><au>da Silva Barbosa, Leonardo</au><au>Cordeiro, Carlos Leandro</au><au>Santos, Nerivaldo Afonso</au><au>Franca Rocha, Rafael Oliveira</au><au>Souza, Deorgia T. M</au><au>Franca Rocha, Washington J. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All Deforestation Matters: Deforestation Alert System for the Caatinga Biome in South America’s Tropical Dry Forest</atitle><jtitle>Sustainability</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>9006</spage><pages>9006-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This study provides a comprehensive overview of Phase I of the deforestation dryland alert system. It focuses on its operation and outcomes from 2020 to 2022 in the Caatinga biome, a unique Brazilian dryland ecosystem. The primary objectives were to analyze deforestation dynamics, identify areas with highest deforestation rates, and determine regions that require prioritization for anti-deforestation efforts and conservation actions. The research methodology involved utilizing remote sensing data, including Landsat imagery, processed through the Google Earth Engine platform. The data were analyzed using spectral unmixing, adjusted Normalized Difference Fraction Index, and harmonic time series models to generate monthly deforestation alerts. The findings reveal a significant increase in deforestation alerts and deforested areas over the study period, with a 148% rise in alerts from 2020 to 2022. The Caatinga biome was identified as the second highest in detected deforestation alerts in Brazil in 2022, accounting for 18.4% of total alerts. Hexagonal assessments illustrate diverse vegetation cover and alert distribution, enabling targeted conservation efforts. The Bivariate Choropleth Map demonstrates the nuanced relationship between alert and vegetation cover, guiding prioritization for deforestation control and native vegetation restoration. The analysis also highlighted the spatial heterogeneity of deforestation, with most deforestation events occurring in small patches, averaging 10.9 ha. The study concludes that while the dryland alert system (SAD-Caatinga—Phase I) has effectively detected deforestation, ongoing challenges such as cloud cover, seasonality, and more frequent and precise monitoring persist. The implementation of DDAS plays a critical role in sustainable forestry by enabling the prompt detection of deforestation, which supports targeted interventions, helps contain the process, and provides decision makers with early insights to distinguish between legal and illegal practices. These capabilities inform decision-making processes and promote sustainable forest management in dryland ecosystems. Future improvements, including using higher-resolution imagery and artificial intelligence for validation, are essential to detect smaller deforestation alerts, reduce manual efforts, and support sustainable dryland management in the Caatinga biome.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16209006</doi><orcidid>https://orcid.org/0000-0002-2175-2792</orcidid><orcidid>https://orcid.org/0000-0002-5117-898X</orcidid><orcidid>https://orcid.org/0000-0002-3153-3841</orcidid><orcidid>https://orcid.org/0000-0003-0406-1006</orcidid><orcidid>https://orcid.org/0000-0002-6164-0138</orcidid><orcidid>https://orcid.org/0000-0003-2582-4391</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-10, Vol.16 (20), p.9006 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3120808646 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agricultural management Arid regions ecology Brazil Carbon Climate change Deforestation Ecosystems Forests Land use Landsat satellites Management Population growth Precipitation Remote sensing Trends Vegetation |
title | All Deforestation Matters: Deforestation Alert System for the Caatinga Biome in South America’s Tropical Dry Forest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20Deforestation%20Matters:%20Deforestation%20Alert%20System%20for%20the%20Caatinga%20Biome%20in%20South%20America%E2%80%99s%20Tropical%20Dry%20Forest&rft.jtitle=Sustainability&rft.au=Costa,%20Diego%20Pereira&rft.date=2024-10-01&rft.volume=16&rft.issue=20&rft.spage=9006&rft.pages=9006-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16209006&rft_dat=%3Cgale_proqu%3EA814420468%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120808646&rft_id=info:pmid/&rft_galeid=A814420468&rfr_iscdi=true |