Optimizing Underground Natural Gas Storage Capacity through Numerical Modeling and Strategic Well Placement

This study focuses on optimizing the storage capacity of an underground natural gas storage facility through numerical modeling and simulation techniques. The reservoir, characterized by an elongated dome structure, was discretized into approximately 16,000 cells. Simulations were conducted using ke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-10, Vol.12 (10), p.2136
Hauptverfasser: Eparu, Cristian Nicolae, Prundurel, Alina Petronela, Doukeh, Rami, Stoica, Doru Bogdan, Ghețiu, Iuliana Veronica, Suditu, Silviu, Stan, Ioana Gabriela, Rădulescu, Renata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2136
container_title Processes
container_volume 12
creator Eparu, Cristian Nicolae
Prundurel, Alina Petronela
Doukeh, Rami
Stoica, Doru Bogdan
Ghețiu, Iuliana Veronica
Suditu, Silviu
Stan, Ioana Gabriela
Rădulescu, Renata
description This study focuses on optimizing the storage capacity of an underground natural gas storage facility through numerical modeling and simulation techniques. The reservoir, characterized by an elongated dome structure, was discretized into approximately 16,000 cells. Simulations were conducted using key parameters such as permeability (10–70 mD) and porosity (12–26%) to assess the dynamics of gas injection and pressure distribution. The model incorporated core and petrophysical data to accurately represent the reservoir’s behavior. By integrating new wells in areas with storage deficits, the model demonstrated improvements in storage efficiency and pressure uniformity. The introduction of additional wells led to a significant increase in storage volume from 380 to 512 million Sm³ and optimized the injection process by reducing the storage period by 25%. The study concludes that reservoir performance can be enhanced with targeted well placement and customized flow rates, resulting in both increased storage capacity and economic benefits.
doi_str_mv 10.3390/pr12102136
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120782256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814375726</galeid><sourcerecordid>A814375726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-a54ac36068bf8656fcb334339a0e64d5b29614c072ded6fcd5d7c5252c0ac4003</originalsourceid><addsrcrecordid>eNpNUU1PwzAMjRBITGMXfkEkbkgd-WiS9jhNMJDGhjQmjlWWpF1G25Q0PYxfT6YhgX2wZb_3bMsA3GI0pTRHD53HBCOCKb8AI0KISHKBxeW__BpM-v6AouWYZoyPwOe6C7ax37at4LbVxlfeDa2GKxkGL2u4kD3cBOdlZeBcdlLZcIRhH0HVHq6GxnirIuzVaVOfNGTkboKXwVRWwQ9T1_Ctlso0pg034KqUdW8mv3EMtk-P7_PnZLlevMxny0ThTIREslQqyhHPdmXGGS_VjtI0XiiR4almO5JznCokiDY6djXTQjHCiEJSpQjRMbg763befQ2mD8XBDb6NIwuKCRIZIYxH1PSMqmRtCtuWLq6tomvTWOVaU9pYn2U4pYIJciLcnwnKu773piw6bxvpjwVGxekBxd8D6A8HVXhT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120782256</pqid></control><display><type>article</type><title>Optimizing Underground Natural Gas Storage Capacity through Numerical Modeling and Strategic Well Placement</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Eparu, Cristian Nicolae ; Prundurel, Alina Petronela ; Doukeh, Rami ; Stoica, Doru Bogdan ; Ghețiu, Iuliana Veronica ; Suditu, Silviu ; Stan, Ioana Gabriela ; Rădulescu, Renata</creator><creatorcontrib>Eparu, Cristian Nicolae ; Prundurel, Alina Petronela ; Doukeh, Rami ; Stoica, Doru Bogdan ; Ghețiu, Iuliana Veronica ; Suditu, Silviu ; Stan, Ioana Gabriela ; Rădulescu, Renata</creatorcontrib><description>This study focuses on optimizing the storage capacity of an underground natural gas storage facility through numerical modeling and simulation techniques. The reservoir, characterized by an elongated dome structure, was discretized into approximately 16,000 cells. Simulations were conducted using key parameters such as permeability (10–70 mD) and porosity (12–26%) to assess the dynamics of gas injection and pressure distribution. The model incorporated core and petrophysical data to accurately represent the reservoir’s behavior. By integrating new wells in areas with storage deficits, the model demonstrated improvements in storage efficiency and pressure uniformity. The introduction of additional wells led to a significant increase in storage volume from 380 to 512 million Sm³ and optimized the injection process by reducing the storage period by 25%. The study concludes that reservoir performance can be enhanced with targeted well placement and customized flow rates, resulting in both increased storage capacity and economic benefits.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12102136</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bans ; Dynamic structural analysis ; Efficiency ; Elongated structure ; Energy consumption ; Gas injection ; Geopolitics ; Mathematical models ; Methods ; Natural gas ; Numerical models ; Permeability ; Placement ; Porosity ; Pressure distribution ; Reservoir performance ; Reservoir storage ; Simulation ; Simulation methods ; Software ; Storage capacity ; Storage facilities ; Underground storage ; Underground structures</subject><ispartof>Processes, 2024-10, Vol.12 (10), p.2136</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c187t-a54ac36068bf8656fcb334339a0e64d5b29614c072ded6fcd5d7c5252c0ac4003</cites><orcidid>0000-0001-8010-0885 ; 0009-0008-6538-0274 ; 0000-0001-9676-0933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Eparu, Cristian Nicolae</creatorcontrib><creatorcontrib>Prundurel, Alina Petronela</creatorcontrib><creatorcontrib>Doukeh, Rami</creatorcontrib><creatorcontrib>Stoica, Doru Bogdan</creatorcontrib><creatorcontrib>Ghețiu, Iuliana Veronica</creatorcontrib><creatorcontrib>Suditu, Silviu</creatorcontrib><creatorcontrib>Stan, Ioana Gabriela</creatorcontrib><creatorcontrib>Rădulescu, Renata</creatorcontrib><title>Optimizing Underground Natural Gas Storage Capacity through Numerical Modeling and Strategic Well Placement</title><title>Processes</title><description>This study focuses on optimizing the storage capacity of an underground natural gas storage facility through numerical modeling and simulation techniques. The reservoir, characterized by an elongated dome structure, was discretized into approximately 16,000 cells. Simulations were conducted using key parameters such as permeability (10–70 mD) and porosity (12–26%) to assess the dynamics of gas injection and pressure distribution. The model incorporated core and petrophysical data to accurately represent the reservoir’s behavior. By integrating new wells in areas with storage deficits, the model demonstrated improvements in storage efficiency and pressure uniformity. The introduction of additional wells led to a significant increase in storage volume from 380 to 512 million Sm³ and optimized the injection process by reducing the storage period by 25%. The study concludes that reservoir performance can be enhanced with targeted well placement and customized flow rates, resulting in both increased storage capacity and economic benefits.</description><subject>Bans</subject><subject>Dynamic structural analysis</subject><subject>Efficiency</subject><subject>Elongated structure</subject><subject>Energy consumption</subject><subject>Gas injection</subject><subject>Geopolitics</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Natural gas</subject><subject>Numerical models</subject><subject>Permeability</subject><subject>Placement</subject><subject>Porosity</subject><subject>Pressure distribution</subject><subject>Reservoir performance</subject><subject>Reservoir storage</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Software</subject><subject>Storage capacity</subject><subject>Storage facilities</subject><subject>Underground storage</subject><subject>Underground structures</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUU1PwzAMjRBITGMXfkEkbkgd-WiS9jhNMJDGhjQmjlWWpF1G25Q0PYxfT6YhgX2wZb_3bMsA3GI0pTRHD53HBCOCKb8AI0KISHKBxeW__BpM-v6AouWYZoyPwOe6C7ax37at4LbVxlfeDa2GKxkGL2u4kD3cBOdlZeBcdlLZcIRhH0HVHq6GxnirIuzVaVOfNGTkboKXwVRWwQ9T1_Ctlso0pg034KqUdW8mv3EMtk-P7_PnZLlevMxny0ThTIREslQqyhHPdmXGGS_VjtI0XiiR4almO5JznCokiDY6djXTQjHCiEJSpQjRMbg763befQ2mD8XBDb6NIwuKCRIZIYxH1PSMqmRtCtuWLq6tomvTWOVaU9pYn2U4pYIJciLcnwnKu773piw6bxvpjwVGxekBxd8D6A8HVXhT</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Eparu, Cristian Nicolae</creator><creator>Prundurel, Alina Petronela</creator><creator>Doukeh, Rami</creator><creator>Stoica, Doru Bogdan</creator><creator>Ghețiu, Iuliana Veronica</creator><creator>Suditu, Silviu</creator><creator>Stan, Ioana Gabriela</creator><creator>Rădulescu, Renata</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8010-0885</orcidid><orcidid>https://orcid.org/0009-0008-6538-0274</orcidid><orcidid>https://orcid.org/0000-0001-9676-0933</orcidid></search><sort><creationdate>20241001</creationdate><title>Optimizing Underground Natural Gas Storage Capacity through Numerical Modeling and Strategic Well Placement</title><author>Eparu, Cristian Nicolae ; Prundurel, Alina Petronela ; Doukeh, Rami ; Stoica, Doru Bogdan ; Ghețiu, Iuliana Veronica ; Suditu, Silviu ; Stan, Ioana Gabriela ; Rădulescu, Renata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-a54ac36068bf8656fcb334339a0e64d5b29614c072ded6fcd5d7c5252c0ac4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bans</topic><topic>Dynamic structural analysis</topic><topic>Efficiency</topic><topic>Elongated structure</topic><topic>Energy consumption</topic><topic>Gas injection</topic><topic>Geopolitics</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Natural gas</topic><topic>Numerical models</topic><topic>Permeability</topic><topic>Placement</topic><topic>Porosity</topic><topic>Pressure distribution</topic><topic>Reservoir performance</topic><topic>Reservoir storage</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Software</topic><topic>Storage capacity</topic><topic>Storage facilities</topic><topic>Underground storage</topic><topic>Underground structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eparu, Cristian Nicolae</creatorcontrib><creatorcontrib>Prundurel, Alina Petronela</creatorcontrib><creatorcontrib>Doukeh, Rami</creatorcontrib><creatorcontrib>Stoica, Doru Bogdan</creatorcontrib><creatorcontrib>Ghețiu, Iuliana Veronica</creatorcontrib><creatorcontrib>Suditu, Silviu</creatorcontrib><creatorcontrib>Stan, Ioana Gabriela</creatorcontrib><creatorcontrib>Rădulescu, Renata</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eparu, Cristian Nicolae</au><au>Prundurel, Alina Petronela</au><au>Doukeh, Rami</au><au>Stoica, Doru Bogdan</au><au>Ghețiu, Iuliana Veronica</au><au>Suditu, Silviu</au><au>Stan, Ioana Gabriela</au><au>Rădulescu, Renata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Underground Natural Gas Storage Capacity through Numerical Modeling and Strategic Well Placement</atitle><jtitle>Processes</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>12</volume><issue>10</issue><spage>2136</spage><pages>2136-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This study focuses on optimizing the storage capacity of an underground natural gas storage facility through numerical modeling and simulation techniques. The reservoir, characterized by an elongated dome structure, was discretized into approximately 16,000 cells. Simulations were conducted using key parameters such as permeability (10–70 mD) and porosity (12–26%) to assess the dynamics of gas injection and pressure distribution. The model incorporated core and petrophysical data to accurately represent the reservoir’s behavior. By integrating new wells in areas with storage deficits, the model demonstrated improvements in storage efficiency and pressure uniformity. The introduction of additional wells led to a significant increase in storage volume from 380 to 512 million Sm³ and optimized the injection process by reducing the storage period by 25%. The study concludes that reservoir performance can be enhanced with targeted well placement and customized flow rates, resulting in both increased storage capacity and economic benefits.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12102136</doi><orcidid>https://orcid.org/0000-0001-8010-0885</orcidid><orcidid>https://orcid.org/0009-0008-6538-0274</orcidid><orcidid>https://orcid.org/0000-0001-9676-0933</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2024-10, Vol.12 (10), p.2136
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_3120782256
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Bans
Dynamic structural analysis
Efficiency
Elongated structure
Energy consumption
Gas injection
Geopolitics
Mathematical models
Methods
Natural gas
Numerical models
Permeability
Placement
Porosity
Pressure distribution
Reservoir performance
Reservoir storage
Simulation
Simulation methods
Software
Storage capacity
Storage facilities
Underground storage
Underground structures
title Optimizing Underground Natural Gas Storage Capacity through Numerical Modeling and Strategic Well Placement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Underground%20Natural%20Gas%20Storage%20Capacity%20through%20Numerical%20Modeling%20and%20Strategic%20Well%20Placement&rft.jtitle=Processes&rft.au=Eparu,%20Cristian%20Nicolae&rft.date=2024-10-01&rft.volume=12&rft.issue=10&rft.spage=2136&rft.pages=2136-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12102136&rft_dat=%3Cgale_proqu%3EA814375726%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120782256&rft_id=info:pmid/&rft_galeid=A814375726&rfr_iscdi=true