Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study
Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, th...
Gespeichert in:
Veröffentlicht in: | Processes 2024-10, Vol.12 (10), p.2076 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 2076 |
container_title | Processes |
container_volume | 12 |
creator | Hu, Tao Han, Kaiqiang Song, Chunhua Che, Jiancheng Li, Bo Huo, Taihu Hu, Tongxu |
description | Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15# coal seam in Shanxi Province and the prevention and control of roof water hazards. |
doi_str_mv | 10.3390/pr12102076 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120782247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814375666</galeid><sourcerecordid>A814375666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-86e2c3c07eb8fa988f89c5f9842062bb8b3a8edcc8e3cb36f698e05cb74c23c63</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxRdRsNRe_AQL3oTo_kk2G28lWhUqPVgRvITNZtKmpLtxN4nUq1_cVIU6l5nDm9_w5iF0TskV5wm5bhxllDASiyM0YozFQRLT-PjffIom3m_IUAnlMhIj9HULPdS22YJp8Vx9YFviV9WCC1Jrik63lVnhmVO67RzgN2vA48rgRQ8u71wBBqvc9oBnXV3v8BPotTLVJxR4aZsBoWqcqv6HoTTc4ClO7bZxsAbjq2Htue2K3Rk6KVXtYfLXx-hldrdMH4L54v4xnc4DzShrAymAaa5JDLksVSJlKRMdlYkMGREsz2XOlYRCawlc51yUIpFAIp3HoWZcCz5GF7_cxtn3DnybbWznzHAy43R4m2QsjA-qlaohq0xp28H-tvI6m0oa8jgSYs-6_FVpZ713UGaNq7bK7TJKsn0a2SEN_g3eyHxe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120782247</pqid></control><display><type>article</type><title>Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hu, Tao ; Han, Kaiqiang ; Song, Chunhua ; Che, Jiancheng ; Li, Bo ; Huo, Taihu ; Hu, Tongxu</creator><creatorcontrib>Hu, Tao ; Han, Kaiqiang ; Song, Chunhua ; Che, Jiancheng ; Li, Bo ; Huo, Taihu ; Hu, Tongxu</creatorcontrib><description>Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15# coal seam in Shanxi Province and the prevention and control of roof water hazards.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12102076</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aquifers ; Caving ; Coal ; Coal industry ; Coal mines ; Coal mining ; Deterrence ; Geology ; Mathematical models ; Mine accidents ; Mineral industry ; Mines ; Mining industry ; Numerical analysis ; Occupational health and safety ; Onsite ; Overburden ; Research methodology ; Simulation ; Simulation methods ; Stone ; Water ; Work face</subject><ispartof>Processes, 2024-10, Vol.12 (10), p.2076</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-86e2c3c07eb8fa988f89c5f9842062bb8b3a8edcc8e3cb36f698e05cb74c23c63</cites><orcidid>0000-0002-3699-3257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Han, Kaiqiang</creatorcontrib><creatorcontrib>Song, Chunhua</creatorcontrib><creatorcontrib>Che, Jiancheng</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Huo, Taihu</creatorcontrib><creatorcontrib>Hu, Tongxu</creatorcontrib><title>Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study</title><title>Processes</title><description>Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15# coal seam in Shanxi Province and the prevention and control of roof water hazards.</description><subject>Aquifers</subject><subject>Caving</subject><subject>Coal</subject><subject>Coal industry</subject><subject>Coal mines</subject><subject>Coal mining</subject><subject>Deterrence</subject><subject>Geology</subject><subject>Mathematical models</subject><subject>Mine accidents</subject><subject>Mineral industry</subject><subject>Mines</subject><subject>Mining industry</subject><subject>Numerical analysis</subject><subject>Occupational health and safety</subject><subject>Onsite</subject><subject>Overburden</subject><subject>Research methodology</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Stone</subject><subject>Water</subject><subject>Work face</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkU9Lw0AQxRdRsNRe_AQL3oTo_kk2G28lWhUqPVgRvITNZtKmpLtxN4nUq1_cVIU6l5nDm9_w5iF0TskV5wm5bhxllDASiyM0YozFQRLT-PjffIom3m_IUAnlMhIj9HULPdS22YJp8Vx9YFviV9WCC1Jrik63lVnhmVO67RzgN2vA48rgRQ8u71wBBqvc9oBnXV3v8BPotTLVJxR4aZsBoWqcqv6HoTTc4ClO7bZxsAbjq2Htue2K3Rk6KVXtYfLXx-hldrdMH4L54v4xnc4DzShrAymAaa5JDLksVSJlKRMdlYkMGREsz2XOlYRCawlc51yUIpFAIp3HoWZcCz5GF7_cxtn3DnybbWznzHAy43R4m2QsjA-qlaohq0xp28H-tvI6m0oa8jgSYs-6_FVpZ713UGaNq7bK7TJKsn0a2SEN_g3eyHxe</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Hu, Tao</creator><creator>Han, Kaiqiang</creator><creator>Song, Chunhua</creator><creator>Che, Jiancheng</creator><creator>Li, Bo</creator><creator>Huo, Taihu</creator><creator>Hu, Tongxu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3699-3257</orcidid></search><sort><creationdate>20241001</creationdate><title>Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study</title><author>Hu, Tao ; Han, Kaiqiang ; Song, Chunhua ; Che, Jiancheng ; Li, Bo ; Huo, Taihu ; Hu, Tongxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-86e2c3c07eb8fa988f89c5f9842062bb8b3a8edcc8e3cb36f698e05cb74c23c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquifers</topic><topic>Caving</topic><topic>Coal</topic><topic>Coal industry</topic><topic>Coal mines</topic><topic>Coal mining</topic><topic>Deterrence</topic><topic>Geology</topic><topic>Mathematical models</topic><topic>Mine accidents</topic><topic>Mineral industry</topic><topic>Mines</topic><topic>Mining industry</topic><topic>Numerical analysis</topic><topic>Occupational health and safety</topic><topic>Onsite</topic><topic>Overburden</topic><topic>Research methodology</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Stone</topic><topic>Water</topic><topic>Work face</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Han, Kaiqiang</creatorcontrib><creatorcontrib>Song, Chunhua</creatorcontrib><creatorcontrib>Che, Jiancheng</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Huo, Taihu</creatorcontrib><creatorcontrib>Hu, Tongxu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Tao</au><au>Han, Kaiqiang</au><au>Song, Chunhua</au><au>Che, Jiancheng</au><au>Li, Bo</au><au>Huo, Taihu</au><au>Hu, Tongxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study</atitle><jtitle>Processes</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>12</volume><issue>10</issue><spage>2076</spage><pages>2076-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Although it is of great significance to master the height of the water-conducting fracture zone (WCFZ) to prevent coal mine disasters and ensure safe production, the most important thing is to predict the height and range of the WCFZ ahead of the working face design before coal mining. Therefore, the 150313 fully mechanized top-coal caving working face of the Yinying coal mine was taken as the engineering background. The development laws of WCFZ were studied using comprehensive research methods, including similar simulation experiments, key strata theory, the experience formula, the numerical simulation, etc. The results show that the WCFZ evolution stage is “goaf–caving zone–fracture zone” and the developing pattern is in a non-isosceles trapezoid gradually developing upward and forward. The height of the WCFZ in the 150313 working face is 89.36 m, and the fracture/mining ratio is 12.46, which is consistent with the actual production. Apparently, the set of indoor research methods in this paper is feasible to predict the height and scope of the WCFZ. The research results can provide a scientific reference for safe mining of the 15# coal seam in Shanxi Province and the prevention and control of roof water hazards.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12102076</doi><orcidid>https://orcid.org/0000-0002-3699-3257</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-10, Vol.12 (10), p.2076 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_3120782247 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aquifers Caving Coal Coal industry Coal mines Coal mining Deterrence Geology Mathematical models Mine accidents Mineral industry Mines Mining industry Numerical analysis Occupational health and safety Onsite Overburden Research methodology Simulation Simulation methods Stone Water Work face |
title | Development Law of Water-Conducting Fracture Zones in Overburden above Fully Mechanized Top-Coal Caving Face: A Comprehensive Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20Law%20of%20Water-Conducting%20Fracture%20Zones%20in%20Overburden%20above%20Fully%20Mechanized%20Top-Coal%20Caving%20Face:%20A%20Comprehensive%20Study&rft.jtitle=Processes&rft.au=Hu,%20Tao&rft.date=2024-10-01&rft.volume=12&rft.issue=10&rft.spage=2076&rft.pages=2076-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12102076&rft_dat=%3Cgale_proqu%3EA814375666%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120782247&rft_id=info:pmid/&rft_galeid=A814375666&rfr_iscdi=true |