Enhanced Hydrolysis of Carbonyl Sulfide in Coking Oven Gas Utilizing an Efficient Ca-Ba-γ-Al2O3 Catalyst
China possesses a substantial capacity for coke production, resulting in the annual generation of over 100 billion standard cubic meters of the by-product coke oven gas. The comprehensive utilization of this gas has emerged as a matter of significant concern within the coking industry. The removal o...
Gespeichert in:
Veröffentlicht in: | Processes 2024-10, Vol.12 (10), p.2150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 2150 |
container_title | Processes |
container_volume | 12 |
creator | Li, Kangrui Wang, Lemeng Fu, Dong Zhang, Pan |
description | China possesses a substantial capacity for coke production, resulting in the annual generation of over 100 billion standard cubic meters of the by-product coke oven gas. The comprehensive utilization of this gas has emerged as a matter of significant concern within the coking industry. The removal of carbonyl sulfide (COS) from coke oven gas is crucial for enhancing gas quality, mitigating equipment corrosion, minimizing environmental pollution, elevating the quality of recovered products, and fostering the production of high-quality steel. A novel Ca-Ba-γ-Al2O3 catalyst has been devised, employing γ-Al2O3 as the catalyst matrix and integrating calcium hydroxide (Ca(OH)2) alongside barium hydroxide octahydrate (Ba(OH)2·8H2O) as the alkaline activating components. The impact of various factors, including reaction temperature, humidity, and the number of activating components loaded, on the hydrolysis efficiency of COS has been meticulously investigated. Furthermore, the catalytic reaction mechanism has been elucidated utilizing advanced characterization techniques such as X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The outcomes of this research reveal that, under optimal conditions of a reaction temperature of 55 °C and a humidity of 56%, the Ca-Ba-γ-Al2O3 catalyst achieves a remarkable COS hydrolysis efficiency of 95.22%. |
doi_str_mv | 10.3390/pr12102150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120781957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120781957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-5a651e527ebe392670b4658bc04f7b7364c2cbdb15f10cfa95ba927d2f87a79e3</originalsourceid><addsrcrecordid>eNpNUM1KAzEYDKJgqb34BAFvQjQ_m83mWJfaCoUetOclySaaumZrsiusr-V7-ExuqaDfZb4Z5psPBoBLgm8Yk_h2HwklmBKOT8CEUiqQFESc_tvPwSylHR5HElbwfAL8IryoYGwNV0Md22ZIPsHWwVJF3YahgY9943xtoQ-wbF99eIabDxvgUiW47XzjPw-SCnDhnDfehm48RXcKfX-heUM3bKSdGmO7C3DmVJPs7BenYHu_eCpXaL1ZPpTzNTKkyDrEVc6J5VRYbZmkucA6y3mhDc6c0ILlmaFG15pwR7BxSnKtJBU1dYVQQlo2BVfH3H1s33ubumrX9jGMLytGKBYFkVyMruujy8Q2pWhdtY_-TcWhIrg6tFn9tcl-APmgZn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120781957</pqid></control><display><type>article</type><title>Enhanced Hydrolysis of Carbonyl Sulfide in Coking Oven Gas Utilizing an Efficient Ca-Ba-γ-Al2O3 Catalyst</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Kangrui ; Wang, Lemeng ; Fu, Dong ; Zhang, Pan</creator><creatorcontrib>Li, Kangrui ; Wang, Lemeng ; Fu, Dong ; Zhang, Pan</creatorcontrib><description>China possesses a substantial capacity for coke production, resulting in the annual generation of over 100 billion standard cubic meters of the by-product coke oven gas. The comprehensive utilization of this gas has emerged as a matter of significant concern within the coking industry. The removal of carbonyl sulfide (COS) from coke oven gas is crucial for enhancing gas quality, mitigating equipment corrosion, minimizing environmental pollution, elevating the quality of recovered products, and fostering the production of high-quality steel. A novel Ca-Ba-γ-Al2O3 catalyst has been devised, employing γ-Al2O3 as the catalyst matrix and integrating calcium hydroxide (Ca(OH)2) alongside barium hydroxide octahydrate (Ba(OH)2·8H2O) as the alkaline activating components. The impact of various factors, including reaction temperature, humidity, and the number of activating components loaded, on the hydrolysis efficiency of COS has been meticulously investigated. Furthermore, the catalytic reaction mechanism has been elucidated utilizing advanced characterization techniques such as X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The outcomes of this research reveal that, under optimal conditions of a reaction temperature of 55 °C and a humidity of 56%, the Ca-Ba-γ-Al2O3 catalyst achieves a remarkable COS hydrolysis efficiency of 95.22%.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12102150</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated carbon ; Adsorption ; Aluminum oxide ; Barium ; Barium hydroxide ; Calcium hydroxide ; Carbonyl compounds ; Carbonyl sulfide ; Carbonyls ; Catalysts ; Coke ; Coke oven gas ; Coke ovens ; Coking ; Corrosion products ; Efficiency ; Gases ; Heat resistance ; Humidity ; Hydrolysis ; Metal oxides ; Natural gas ; Porous materials ; Reaction mechanisms ; Slaked lime ; Steel production ; Sulfur ; Temperature ; Transitional aluminas ; X-ray diffraction</subject><ispartof>Processes, 2024-10, Vol.12 (10), p.2150</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-5a651e527ebe392670b4658bc04f7b7364c2cbdb15f10cfa95ba927d2f87a79e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Li, Kangrui</creatorcontrib><creatorcontrib>Wang, Lemeng</creatorcontrib><creatorcontrib>Fu, Dong</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><title>Enhanced Hydrolysis of Carbonyl Sulfide in Coking Oven Gas Utilizing an Efficient Ca-Ba-γ-Al2O3 Catalyst</title><title>Processes</title><description>China possesses a substantial capacity for coke production, resulting in the annual generation of over 100 billion standard cubic meters of the by-product coke oven gas. The comprehensive utilization of this gas has emerged as a matter of significant concern within the coking industry. The removal of carbonyl sulfide (COS) from coke oven gas is crucial for enhancing gas quality, mitigating equipment corrosion, minimizing environmental pollution, elevating the quality of recovered products, and fostering the production of high-quality steel. A novel Ca-Ba-γ-Al2O3 catalyst has been devised, employing γ-Al2O3 as the catalyst matrix and integrating calcium hydroxide (Ca(OH)2) alongside barium hydroxide octahydrate (Ba(OH)2·8H2O) as the alkaline activating components. The impact of various factors, including reaction temperature, humidity, and the number of activating components loaded, on the hydrolysis efficiency of COS has been meticulously investigated. Furthermore, the catalytic reaction mechanism has been elucidated utilizing advanced characterization techniques such as X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The outcomes of this research reveal that, under optimal conditions of a reaction temperature of 55 °C and a humidity of 56%, the Ca-Ba-γ-Al2O3 catalyst achieves a remarkable COS hydrolysis efficiency of 95.22%.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Aluminum oxide</subject><subject>Barium</subject><subject>Barium hydroxide</subject><subject>Calcium hydroxide</subject><subject>Carbonyl compounds</subject><subject>Carbonyl sulfide</subject><subject>Carbonyls</subject><subject>Catalysts</subject><subject>Coke</subject><subject>Coke oven gas</subject><subject>Coke ovens</subject><subject>Coking</subject><subject>Corrosion products</subject><subject>Efficiency</subject><subject>Gases</subject><subject>Heat resistance</subject><subject>Humidity</subject><subject>Hydrolysis</subject><subject>Metal oxides</subject><subject>Natural gas</subject><subject>Porous materials</subject><subject>Reaction mechanisms</subject><subject>Slaked lime</subject><subject>Steel production</subject><subject>Sulfur</subject><subject>Temperature</subject><subject>Transitional aluminas</subject><subject>X-ray diffraction</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUM1KAzEYDKJgqb34BAFvQjQ_m83mWJfaCoUetOclySaaumZrsiusr-V7-ExuqaDfZb4Z5psPBoBLgm8Yk_h2HwklmBKOT8CEUiqQFESc_tvPwSylHR5HElbwfAL8IryoYGwNV0Md22ZIPsHWwVJF3YahgY9943xtoQ-wbF99eIabDxvgUiW47XzjPw-SCnDhnDfehm48RXcKfX-heUM3bKSdGmO7C3DmVJPs7BenYHu_eCpXaL1ZPpTzNTKkyDrEVc6J5VRYbZmkucA6y3mhDc6c0ILlmaFG15pwR7BxSnKtJBU1dYVQQlo2BVfH3H1s33ubumrX9jGMLytGKBYFkVyMruujy8Q2pWhdtY_-TcWhIrg6tFn9tcl-APmgZn8</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Li, Kangrui</creator><creator>Wang, Lemeng</creator><creator>Fu, Dong</creator><creator>Zhang, Pan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241002</creationdate><title>Enhanced Hydrolysis of Carbonyl Sulfide in Coking Oven Gas Utilizing an Efficient Ca-Ba-γ-Al2O3 Catalyst</title><author>Li, Kangrui ; Wang, Lemeng ; Fu, Dong ; Zhang, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-5a651e527ebe392670b4658bc04f7b7364c2cbdb15f10cfa95ba927d2f87a79e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Aluminum oxide</topic><topic>Barium</topic><topic>Barium hydroxide</topic><topic>Calcium hydroxide</topic><topic>Carbonyl compounds</topic><topic>Carbonyl sulfide</topic><topic>Carbonyls</topic><topic>Catalysts</topic><topic>Coke</topic><topic>Coke oven gas</topic><topic>Coke ovens</topic><topic>Coking</topic><topic>Corrosion products</topic><topic>Efficiency</topic><topic>Gases</topic><topic>Heat resistance</topic><topic>Humidity</topic><topic>Hydrolysis</topic><topic>Metal oxides</topic><topic>Natural gas</topic><topic>Porous materials</topic><topic>Reaction mechanisms</topic><topic>Slaked lime</topic><topic>Steel production</topic><topic>Sulfur</topic><topic>Temperature</topic><topic>Transitional aluminas</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kangrui</creatorcontrib><creatorcontrib>Wang, Lemeng</creatorcontrib><creatorcontrib>Fu, Dong</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kangrui</au><au>Wang, Lemeng</au><au>Fu, Dong</au><au>Zhang, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Hydrolysis of Carbonyl Sulfide in Coking Oven Gas Utilizing an Efficient Ca-Ba-γ-Al2O3 Catalyst</atitle><jtitle>Processes</jtitle><date>2024-10-02</date><risdate>2024</risdate><volume>12</volume><issue>10</issue><spage>2150</spage><pages>2150-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>China possesses a substantial capacity for coke production, resulting in the annual generation of over 100 billion standard cubic meters of the by-product coke oven gas. The comprehensive utilization of this gas has emerged as a matter of significant concern within the coking industry. The removal of carbonyl sulfide (COS) from coke oven gas is crucial for enhancing gas quality, mitigating equipment corrosion, minimizing environmental pollution, elevating the quality of recovered products, and fostering the production of high-quality steel. A novel Ca-Ba-γ-Al2O3 catalyst has been devised, employing γ-Al2O3 as the catalyst matrix and integrating calcium hydroxide (Ca(OH)2) alongside barium hydroxide octahydrate (Ba(OH)2·8H2O) as the alkaline activating components. The impact of various factors, including reaction temperature, humidity, and the number of activating components loaded, on the hydrolysis efficiency of COS has been meticulously investigated. Furthermore, the catalytic reaction mechanism has been elucidated utilizing advanced characterization techniques such as X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis. The outcomes of this research reveal that, under optimal conditions of a reaction temperature of 55 °C and a humidity of 56%, the Ca-Ba-γ-Al2O3 catalyst achieves a remarkable COS hydrolysis efficiency of 95.22%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12102150</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-10, Vol.12 (10), p.2150 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_3120781957 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Activated carbon Adsorption Aluminum oxide Barium Barium hydroxide Calcium hydroxide Carbonyl compounds Carbonyl sulfide Carbonyls Catalysts Coke Coke oven gas Coke ovens Coking Corrosion products Efficiency Gases Heat resistance Humidity Hydrolysis Metal oxides Natural gas Porous materials Reaction mechanisms Slaked lime Steel production Sulfur Temperature Transitional aluminas X-ray diffraction |
title | Enhanced Hydrolysis of Carbonyl Sulfide in Coking Oven Gas Utilizing an Efficient Ca-Ba-γ-Al2O3 Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Hydrolysis%20of%20Carbonyl%20Sulfide%20in%20Coking%20Oven%20Gas%20Utilizing%20an%20Efficient%20Ca-Ba-%CE%B3-Al2O3%20Catalyst&rft.jtitle=Processes&rft.au=Li,%20Kangrui&rft.date=2024-10-02&rft.volume=12&rft.issue=10&rft.spage=2150&rft.pages=2150-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12102150&rft_dat=%3Cproquest_cross%3E3120781957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120781957&rft_id=info:pmid/&rfr_iscdi=true |