Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting

This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-10, Vol.12 (10), p.2199
Hauptverfasser: Mahdi, Zainab Kamal, Abbas, Riyadh A, Al-Taleb, Manaf K. Hussain, Ali, Adnan Hussein, Mohamed, Esam M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2199
container_title Processes
container_volume 12
creator Mahdi, Zainab Kamal
Abbas, Riyadh A
Al-Taleb, Manaf K. Hussain
Ali, Adnan Hussein
Mohamed, Esam M
description This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 energy harvesting power supply. Experimental results verified the system’s performance in harvesting power within a specific frequency range of 10 Hz to 50 Hz, with the foremost overall performance at 30 Hz. The device generated the highest voltage of 3.3 V, delivering a power output of 2.18 mW, which is sufficient to power low-power electronic devices. The device maintained solid performance across a temperature range of 40 °C to 50 °C, underscoring its robustness in various environmental situations. The findings highlight the capacity of this form of generation to offer a sustainable power source for remote pipeline tracking, contributing to stronger protection and operational efficiency.
doi_str_mv 10.3390/pr12102199
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120780620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814375789</galeid><sourcerecordid>A814375789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-2a4bc739334546286135423c5eaeb1238aa69055b726dc506c223257706641eb3</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgqb34Cxa8CVvzsUk2x1KqFeoHaM8hm2bXlG2yJlul_npTKlTBmcMM896bd3gAXCI4JkTAmy4gjCBGQpyAAcaY54IjfvprPwejGNcwlUCkpGwAHpddE9TKuiZ72cZeWaeq1mTPtjOtdSZ78M72PuzxT9u_JcB8edMa3Qers5kzodllcxU-TOwT6QKc1aqNZvQzh2B5O3udzvPF0939dLLINaaoz7EqKs2JIKSgBcMlQ4QWmGhqlKkQJqVSTEBKK47ZSlPINMYEU84hYwUyFRmCq8PfLvj3bfKWa78NLllKgjDkJWQYHlmNao20rvZ9UHpjo5aTEhWEU16KxBr_w0q9MhurvTO1Tfc_guuDQAcfYzC17ILdqLCTCMp9EvKYBPkGQxh4IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120780620</pqid></control><display><type>article</type><title>Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Mahdi, Zainab Kamal ; Abbas, Riyadh A ; Al-Taleb, Manaf K. Hussain ; Ali, Adnan Hussein ; Mohamed, Esam M</creator><creatorcontrib>Mahdi, Zainab Kamal ; Abbas, Riyadh A ; Al-Taleb, Manaf K. Hussain ; Ali, Adnan Hussein ; Mohamed, Esam M</creatorcontrib><description>This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 energy harvesting power supply. Experimental results verified the system’s performance in harvesting power within a specific frequency range of 10 Hz to 50 Hz, with the foremost overall performance at 30 Hz. The device generated the highest voltage of 3.3 V, delivering a power output of 2.18 mW, which is sufficient to power low-power electronic devices. The device maintained solid performance across a temperature range of 40 °C to 50 °C, underscoring its robustness in various environmental situations. The findings highlight the capacity of this form of generation to offer a sustainable power source for remote pipeline tracking, contributing to stronger protection and operational efficiency.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12102199</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Batteries ; Design ; Efficiency ; Electric power production ; Electricity ; Electronic equipment ; Energy harvesting ; Energy resources ; Frequency ranges ; Integrated approach ; Long-term care of the sick ; Monitoring systems ; Piezoelectricity ; Power management ; Power sources ; Power supply ; Renewable energy ; Sensors ; Temperature ; Vibration ; Vibration monitoring</subject><ispartof>Processes, 2024-10, Vol.12 (10), p.2199</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-2a4bc739334546286135423c5eaeb1238aa69055b726dc506c223257706641eb3</cites><orcidid>0000-0002-5716-2997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahdi, Zainab Kamal</creatorcontrib><creatorcontrib>Abbas, Riyadh A</creatorcontrib><creatorcontrib>Al-Taleb, Manaf K. Hussain</creatorcontrib><creatorcontrib>Ali, Adnan Hussein</creatorcontrib><creatorcontrib>Mohamed, Esam M</creatorcontrib><title>Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting</title><title>Processes</title><description>This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 energy harvesting power supply. Experimental results verified the system’s performance in harvesting power within a specific frequency range of 10 Hz to 50 Hz, with the foremost overall performance at 30 Hz. The device generated the highest voltage of 3.3 V, delivering a power output of 2.18 mW, which is sufficient to power low-power electronic devices. The device maintained solid performance across a temperature range of 40 °C to 50 °C, underscoring its robustness in various environmental situations. The findings highlight the capacity of this form of generation to offer a sustainable power source for remote pipeline tracking, contributing to stronger protection and operational efficiency.</description><subject>Batteries</subject><subject>Design</subject><subject>Efficiency</subject><subject>Electric power production</subject><subject>Electricity</subject><subject>Electronic equipment</subject><subject>Energy harvesting</subject><subject>Energy resources</subject><subject>Frequency ranges</subject><subject>Integrated approach</subject><subject>Long-term care of the sick</subject><subject>Monitoring systems</subject><subject>Piezoelectricity</subject><subject>Power management</subject><subject>Power sources</subject><subject>Power supply</subject><subject>Renewable energy</subject><subject>Sensors</subject><subject>Temperature</subject><subject>Vibration</subject><subject>Vibration monitoring</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUU1LAzEQDaJgqb34Cxa8CVvzsUk2x1KqFeoHaM8hm2bXlG2yJlul_npTKlTBmcMM896bd3gAXCI4JkTAmy4gjCBGQpyAAcaY54IjfvprPwejGNcwlUCkpGwAHpddE9TKuiZ72cZeWaeq1mTPtjOtdSZ78M72PuzxT9u_JcB8edMa3Qers5kzodllcxU-TOwT6QKc1aqNZvQzh2B5O3udzvPF0939dLLINaaoz7EqKs2JIKSgBcMlQ4QWmGhqlKkQJqVSTEBKK47ZSlPINMYEU84hYwUyFRmCq8PfLvj3bfKWa78NLllKgjDkJWQYHlmNao20rvZ9UHpjo5aTEhWEU16KxBr_w0q9MhurvTO1Tfc_guuDQAcfYzC17ILdqLCTCMp9EvKYBPkGQxh4IA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Mahdi, Zainab Kamal</creator><creator>Abbas, Riyadh A</creator><creator>Al-Taleb, Manaf K. Hussain</creator><creator>Ali, Adnan Hussein</creator><creator>Mohamed, Esam M</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5716-2997</orcidid></search><sort><creationdate>20241001</creationdate><title>Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting</title><author>Mahdi, Zainab Kamal ; Abbas, Riyadh A ; Al-Taleb, Manaf K. Hussain ; Ali, Adnan Hussein ; Mohamed, Esam M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-2a4bc739334546286135423c5eaeb1238aa69055b726dc506c223257706641eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Design</topic><topic>Efficiency</topic><topic>Electric power production</topic><topic>Electricity</topic><topic>Electronic equipment</topic><topic>Energy harvesting</topic><topic>Energy resources</topic><topic>Frequency ranges</topic><topic>Integrated approach</topic><topic>Long-term care of the sick</topic><topic>Monitoring systems</topic><topic>Piezoelectricity</topic><topic>Power management</topic><topic>Power sources</topic><topic>Power supply</topic><topic>Renewable energy</topic><topic>Sensors</topic><topic>Temperature</topic><topic>Vibration</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdi, Zainab Kamal</creatorcontrib><creatorcontrib>Abbas, Riyadh A</creatorcontrib><creatorcontrib>Al-Taleb, Manaf K. Hussain</creatorcontrib><creatorcontrib>Ali, Adnan Hussein</creatorcontrib><creatorcontrib>Mohamed, Esam M</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdi, Zainab Kamal</au><au>Abbas, Riyadh A</au><au>Al-Taleb, Manaf K. Hussain</au><au>Ali, Adnan Hussein</au><au>Mohamed, Esam M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting</atitle><jtitle>Processes</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>12</volume><issue>10</issue><spage>2199</spage><pages>2199-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 energy harvesting power supply. Experimental results verified the system’s performance in harvesting power within a specific frequency range of 10 Hz to 50 Hz, with the foremost overall performance at 30 Hz. The device generated the highest voltage of 3.3 V, delivering a power output of 2.18 mW, which is sufficient to power low-power electronic devices. The device maintained solid performance across a temperature range of 40 °C to 50 °C, underscoring its robustness in various environmental situations. The findings highlight the capacity of this form of generation to offer a sustainable power source for remote pipeline tracking, contributing to stronger protection and operational efficiency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12102199</doi><orcidid>https://orcid.org/0000-0002-5716-2997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2024-10, Vol.12 (10), p.2199
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_3120780620
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Batteries
Design
Efficiency
Electric power production
Electricity
Electronic equipment
Energy harvesting
Energy resources
Frequency ranges
Integrated approach
Long-term care of the sick
Monitoring systems
Piezoelectricity
Power management
Power sources
Power supply
Renewable energy
Sensors
Temperature
Vibration
Vibration monitoring
title Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upgrading%20Sustainable%20Pipeline%20Monitoring%20with%20Piezoelectric%20Energy%20Harvesting&rft.jtitle=Processes&rft.au=Mahdi,%20Zainab%20Kamal&rft.date=2024-10-01&rft.volume=12&rft.issue=10&rft.spage=2199&rft.pages=2199-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12102199&rft_dat=%3Cgale_proqu%3EA814375789%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120780620&rft_id=info:pmid/&rft_galeid=A814375789&rfr_iscdi=true