Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting
This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 ener...
Gespeichert in:
Veröffentlicht in: | Processes 2024-10, Vol.12 (10), p.2199 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 2199 |
container_title | Processes |
container_volume | 12 |
creator | Mahdi, Zainab Kamal Abbas, Riyadh A Al-Taleb, Manaf K. Hussain Ali, Adnan Hussein Mohamed, Esam M |
description | This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 energy harvesting power supply. Experimental results verified the system’s performance in harvesting power within a specific frequency range of 10 Hz to 50 Hz, with the foremost overall performance at 30 Hz. The device generated the highest voltage of 3.3 V, delivering a power output of 2.18 mW, which is sufficient to power low-power electronic devices. The device maintained solid performance across a temperature range of 40 °C to 50 °C, underscoring its robustness in various environmental situations. The findings highlight the capacity of this form of generation to offer a sustainable power source for remote pipeline tracking, contributing to stronger protection and operational efficiency. |
doi_str_mv | 10.3390/pr12102199 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120780620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814375789</galeid><sourcerecordid>A814375789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-2a4bc739334546286135423c5eaeb1238aa69055b726dc506c223257706641eb3</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgqb34Cxa8CVvzsUk2x1KqFeoHaM8hm2bXlG2yJlul_npTKlTBmcMM896bd3gAXCI4JkTAmy4gjCBGQpyAAcaY54IjfvprPwejGNcwlUCkpGwAHpddE9TKuiZ72cZeWaeq1mTPtjOtdSZ78M72PuzxT9u_JcB8edMa3Qers5kzodllcxU-TOwT6QKc1aqNZvQzh2B5O3udzvPF0939dLLINaaoz7EqKs2JIKSgBcMlQ4QWmGhqlKkQJqVSTEBKK47ZSlPINMYEU84hYwUyFRmCq8PfLvj3bfKWa78NLllKgjDkJWQYHlmNao20rvZ9UHpjo5aTEhWEU16KxBr_w0q9MhurvTO1Tfc_guuDQAcfYzC17ILdqLCTCMp9EvKYBPkGQxh4IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120780620</pqid></control><display><type>article</type><title>Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Mahdi, Zainab Kamal ; Abbas, Riyadh A ; Al-Taleb, Manaf K. Hussain ; Ali, Adnan Hussein ; Mohamed, Esam M</creator><creatorcontrib>Mahdi, Zainab Kamal ; Abbas, Riyadh A ; Al-Taleb, Manaf K. Hussain ; Ali, Adnan Hussein ; Mohamed, Esam M</creatorcontrib><description>This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 energy harvesting power supply. Experimental results verified the system’s performance in harvesting power within a specific frequency range of 10 Hz to 50 Hz, with the foremost overall performance at 30 Hz. The device generated the highest voltage of 3.3 V, delivering a power output of 2.18 mW, which is sufficient to power low-power electronic devices. The device maintained solid performance across a temperature range of 40 °C to 50 °C, underscoring its robustness in various environmental situations. The findings highlight the capacity of this form of generation to offer a sustainable power source for remote pipeline tracking, contributing to stronger protection and operational efficiency.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12102199</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Batteries ; Design ; Efficiency ; Electric power production ; Electricity ; Electronic equipment ; Energy harvesting ; Energy resources ; Frequency ranges ; Integrated approach ; Long-term care of the sick ; Monitoring systems ; Piezoelectricity ; Power management ; Power sources ; Power supply ; Renewable energy ; Sensors ; Temperature ; Vibration ; Vibration monitoring</subject><ispartof>Processes, 2024-10, Vol.12 (10), p.2199</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-2a4bc739334546286135423c5eaeb1238aa69055b726dc506c223257706641eb3</cites><orcidid>0000-0002-5716-2997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahdi, Zainab Kamal</creatorcontrib><creatorcontrib>Abbas, Riyadh A</creatorcontrib><creatorcontrib>Al-Taleb, Manaf K. Hussain</creatorcontrib><creatorcontrib>Ali, Adnan Hussein</creatorcontrib><creatorcontrib>Mohamed, Esam M</creatorcontrib><title>Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting</title><title>Processes</title><description>This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 energy harvesting power supply. Experimental results verified the system’s performance in harvesting power within a specific frequency range of 10 Hz to 50 Hz, with the foremost overall performance at 30 Hz. The device generated the highest voltage of 3.3 V, delivering a power output of 2.18 mW, which is sufficient to power low-power electronic devices. The device maintained solid performance across a temperature range of 40 °C to 50 °C, underscoring its robustness in various environmental situations. The findings highlight the capacity of this form of generation to offer a sustainable power source for remote pipeline tracking, contributing to stronger protection and operational efficiency.</description><subject>Batteries</subject><subject>Design</subject><subject>Efficiency</subject><subject>Electric power production</subject><subject>Electricity</subject><subject>Electronic equipment</subject><subject>Energy harvesting</subject><subject>Energy resources</subject><subject>Frequency ranges</subject><subject>Integrated approach</subject><subject>Long-term care of the sick</subject><subject>Monitoring systems</subject><subject>Piezoelectricity</subject><subject>Power management</subject><subject>Power sources</subject><subject>Power supply</subject><subject>Renewable energy</subject><subject>Sensors</subject><subject>Temperature</subject><subject>Vibration</subject><subject>Vibration monitoring</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUU1LAzEQDaJgqb34Cxa8CVvzsUk2x1KqFeoHaM8hm2bXlG2yJlul_npTKlTBmcMM896bd3gAXCI4JkTAmy4gjCBGQpyAAcaY54IjfvprPwejGNcwlUCkpGwAHpddE9TKuiZ72cZeWaeq1mTPtjOtdSZ78M72PuzxT9u_JcB8edMa3Qers5kzodllcxU-TOwT6QKc1aqNZvQzh2B5O3udzvPF0939dLLINaaoz7EqKs2JIKSgBcMlQ4QWmGhqlKkQJqVSTEBKK47ZSlPINMYEU84hYwUyFRmCq8PfLvj3bfKWa78NLllKgjDkJWQYHlmNao20rvZ9UHpjo5aTEhWEU16KxBr_w0q9MhurvTO1Tfc_guuDQAcfYzC17ILdqLCTCMp9EvKYBPkGQxh4IA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Mahdi, Zainab Kamal</creator><creator>Abbas, Riyadh A</creator><creator>Al-Taleb, Manaf K. Hussain</creator><creator>Ali, Adnan Hussein</creator><creator>Mohamed, Esam M</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5716-2997</orcidid></search><sort><creationdate>20241001</creationdate><title>Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting</title><author>Mahdi, Zainab Kamal ; Abbas, Riyadh A ; Al-Taleb, Manaf K. Hussain ; Ali, Adnan Hussein ; Mohamed, Esam M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-2a4bc739334546286135423c5eaeb1238aa69055b726dc506c223257706641eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Design</topic><topic>Efficiency</topic><topic>Electric power production</topic><topic>Electricity</topic><topic>Electronic equipment</topic><topic>Energy harvesting</topic><topic>Energy resources</topic><topic>Frequency ranges</topic><topic>Integrated approach</topic><topic>Long-term care of the sick</topic><topic>Monitoring systems</topic><topic>Piezoelectricity</topic><topic>Power management</topic><topic>Power sources</topic><topic>Power supply</topic><topic>Renewable energy</topic><topic>Sensors</topic><topic>Temperature</topic><topic>Vibration</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdi, Zainab Kamal</creatorcontrib><creatorcontrib>Abbas, Riyadh A</creatorcontrib><creatorcontrib>Al-Taleb, Manaf K. Hussain</creatorcontrib><creatorcontrib>Ali, Adnan Hussein</creatorcontrib><creatorcontrib>Mohamed, Esam M</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdi, Zainab Kamal</au><au>Abbas, Riyadh A</au><au>Al-Taleb, Manaf K. Hussain</au><au>Ali, Adnan Hussein</au><au>Mohamed, Esam M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting</atitle><jtitle>Processes</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>12</volume><issue>10</issue><spage>2199</spage><pages>2199-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This study presents the design and implementation of a piezoelectric power harvesting device to capture vibrational energy from pipelines to self-powered IoT devices. The device utilizes key components along with the PPA-1001 piezoelectric sensor, the STM32F103C8T6 microcontroller, and LTC-3588 energy harvesting power supply. Experimental results verified the system’s performance in harvesting power within a specific frequency range of 10 Hz to 50 Hz, with the foremost overall performance at 30 Hz. The device generated the highest voltage of 3.3 V, delivering a power output of 2.18 mW, which is sufficient to power low-power electronic devices. The device maintained solid performance across a temperature range of 40 °C to 50 °C, underscoring its robustness in various environmental situations. The findings highlight the capacity of this form of generation to offer a sustainable power source for remote pipeline tracking, contributing to stronger protection and operational efficiency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12102199</doi><orcidid>https://orcid.org/0000-0002-5716-2997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-10, Vol.12 (10), p.2199 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_3120780620 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Batteries Design Efficiency Electric power production Electricity Electronic equipment Energy harvesting Energy resources Frequency ranges Integrated approach Long-term care of the sick Monitoring systems Piezoelectricity Power management Power sources Power supply Renewable energy Sensors Temperature Vibration Vibration monitoring |
title | Upgrading Sustainable Pipeline Monitoring with Piezoelectric Energy Harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upgrading%20Sustainable%20Pipeline%20Monitoring%20with%20Piezoelectric%20Energy%20Harvesting&rft.jtitle=Processes&rft.au=Mahdi,%20Zainab%20Kamal&rft.date=2024-10-01&rft.volume=12&rft.issue=10&rft.spage=2199&rft.pages=2199-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12102199&rft_dat=%3Cgale_proqu%3EA814375789%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120780620&rft_id=info:pmid/&rft_galeid=A814375789&rfr_iscdi=true |