Scalable Co-Clustering for Large-Scale Data through Dynamic Partitioning and Hierarchical Merging
Co-clustering simultaneously clusters rows and columns, revealing more fine-grained groups. However, existing co-clustering methods suffer from poor scalability and cannot handle large-scale data. This paper presents a novel and scalable co-clustering method designed to uncover intricate patterns in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wu, Zihan Huang, Zhaoke Hong, Yan |
description | Co-clustering simultaneously clusters rows and columns, revealing more fine-grained groups. However, existing co-clustering methods suffer from poor scalability and cannot handle large-scale data. This paper presents a novel and scalable co-clustering method designed to uncover intricate patterns in high-dimensional, large-scale datasets. Specifically, we first propose a large matrix partitioning algorithm that partitions a large matrix into smaller submatrices, enabling parallel co-clustering. This method employs a probabilistic model to optimize the configuration of submatrices, balancing the computational efficiency and depth of analysis. Additionally, we propose a hierarchical co-cluster merging algorithm that efficiently identifies and merges co-clusters from these submatrices, enhancing the robustness and reliability of the process. Extensive evaluations validate the effectiveness and efficiency of our method. Experimental results demonstrate a significant reduction in computation time, with an approximate 83% decrease for dense matrices and up to 30% for sparse matrices. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3120695023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120695023</sourcerecordid><originalsourceid>FETCH-proquest_journals_31206950233</originalsourceid><addsrcrecordid>eNqNjsEKgkAURYcgSMp_eNBaGMe0WmvhoiCovbxsHEdspt6Mi_4-hT6g1V2cc-DOWCCSJI52GyEWLHSu45yLbCvSNAkYXmvs8d5LyG2U94PzkrRR0FiCE5KS0SRIKNAj-JbsoFooPgafuoYLktdeWzMVaB5QaklIdavHBs6S1AhWbN5g72T42yVbHw-3vIxeZN-DdL7q7EBmRFUSC57tUz7-_c_6AuGhRLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120695023</pqid></control><display><type>article</type><title>Scalable Co-Clustering for Large-Scale Data through Dynamic Partitioning and Hierarchical Merging</title><source>Free E- Journals</source><creator>Wu, Zihan ; Huang, Zhaoke ; Hong, Yan</creator><creatorcontrib>Wu, Zihan ; Huang, Zhaoke ; Hong, Yan</creatorcontrib><description>Co-clustering simultaneously clusters rows and columns, revealing more fine-grained groups. However, existing co-clustering methods suffer from poor scalability and cannot handle large-scale data. This paper presents a novel and scalable co-clustering method designed to uncover intricate patterns in high-dimensional, large-scale datasets. Specifically, we first propose a large matrix partitioning algorithm that partitions a large matrix into smaller submatrices, enabling parallel co-clustering. This method employs a probabilistic model to optimize the configuration of submatrices, balancing the computational efficiency and depth of analysis. Additionally, we propose a hierarchical co-cluster merging algorithm that efficiently identifies and merges co-clusters from these submatrices, enhancing the robustness and reliability of the process. Extensive evaluations validate the effectiveness and efficiency of our method. Experimental results demonstrate a significant reduction in computation time, with an approximate 83% decrease for dense matrices and up to 30% for sparse matrices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Clustering ; Computing time ; Matrix partitioning ; Partitioning ; Probabilistic models ; Sparse matrices</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wu, Zihan</creatorcontrib><creatorcontrib>Huang, Zhaoke</creatorcontrib><creatorcontrib>Hong, Yan</creatorcontrib><title>Scalable Co-Clustering for Large-Scale Data through Dynamic Partitioning and Hierarchical Merging</title><title>arXiv.org</title><description>Co-clustering simultaneously clusters rows and columns, revealing more fine-grained groups. However, existing co-clustering methods suffer from poor scalability and cannot handle large-scale data. This paper presents a novel and scalable co-clustering method designed to uncover intricate patterns in high-dimensional, large-scale datasets. Specifically, we first propose a large matrix partitioning algorithm that partitions a large matrix into smaller submatrices, enabling parallel co-clustering. This method employs a probabilistic model to optimize the configuration of submatrices, balancing the computational efficiency and depth of analysis. Additionally, we propose a hierarchical co-cluster merging algorithm that efficiently identifies and merges co-clusters from these submatrices, enhancing the robustness and reliability of the process. Extensive evaluations validate the effectiveness and efficiency of our method. Experimental results demonstrate a significant reduction in computation time, with an approximate 83% decrease for dense matrices and up to 30% for sparse matrices.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computing time</subject><subject>Matrix partitioning</subject><subject>Partitioning</subject><subject>Probabilistic models</subject><subject>Sparse matrices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsEKgkAURYcgSMp_eNBaGMe0WmvhoiCovbxsHEdspt6Mi_4-hT6g1V2cc-DOWCCSJI52GyEWLHSu45yLbCvSNAkYXmvs8d5LyG2U94PzkrRR0FiCE5KS0SRIKNAj-JbsoFooPgafuoYLktdeWzMVaB5QaklIdavHBs6S1AhWbN5g72T42yVbHw-3vIxeZN-DdL7q7EBmRFUSC57tUz7-_c_6AuGhRLQ</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Wu, Zihan</creator><creator>Huang, Zhaoke</creator><creator>Hong, Yan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241009</creationdate><title>Scalable Co-Clustering for Large-Scale Data through Dynamic Partitioning and Hierarchical Merging</title><author>Wu, Zihan ; Huang, Zhaoke ; Hong, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31206950233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computing time</topic><topic>Matrix partitioning</topic><topic>Partitioning</topic><topic>Probabilistic models</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zihan</creatorcontrib><creatorcontrib>Huang, Zhaoke</creatorcontrib><creatorcontrib>Hong, Yan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zihan</au><au>Huang, Zhaoke</au><au>Hong, Yan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scalable Co-Clustering for Large-Scale Data through Dynamic Partitioning and Hierarchical Merging</atitle><jtitle>arXiv.org</jtitle><date>2024-10-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Co-clustering simultaneously clusters rows and columns, revealing more fine-grained groups. However, existing co-clustering methods suffer from poor scalability and cannot handle large-scale data. This paper presents a novel and scalable co-clustering method designed to uncover intricate patterns in high-dimensional, large-scale datasets. Specifically, we first propose a large matrix partitioning algorithm that partitions a large matrix into smaller submatrices, enabling parallel co-clustering. This method employs a probabilistic model to optimize the configuration of submatrices, balancing the computational efficiency and depth of analysis. Additionally, we propose a hierarchical co-cluster merging algorithm that efficiently identifies and merges co-clusters from these submatrices, enhancing the robustness and reliability of the process. Extensive evaluations validate the effectiveness and efficiency of our method. Experimental results demonstrate a significant reduction in computation time, with an approximate 83% decrease for dense matrices and up to 30% for sparse matrices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3120695023 |
source | Free E- Journals |
subjects | Algorithms Clustering Computing time Matrix partitioning Partitioning Probabilistic models Sparse matrices |
title | Scalable Co-Clustering for Large-Scale Data through Dynamic Partitioning and Hierarchical Merging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scalable%20Co-Clustering%20for%20Large-Scale%20Data%20through%20Dynamic%20Partitioning%20and%20Hierarchical%20Merging&rft.jtitle=arXiv.org&rft.au=Wu,%20Zihan&rft.date=2024-10-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3120695023%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120695023&rft_id=info:pmid/&rfr_iscdi=true |