Relativisitic non-pascalian fluid as a density contribution

Anisotropy of local pressure distribution and dissipation are essential in understanding the evolution of the internal structure of compact objects and their observable characteristics. In this work, we reinterpret local pressure anisotropy in relativistic stellar structures as a contribution to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Ospino, Justo, Suárez-Urango, Daniel, Becerra, Laura M, Hernández, Héctor, Núñez, Luis A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ospino, Justo
Suárez-Urango, Daniel
Becerra, Laura M
Hernández, Héctor
Núñez, Luis A
description Anisotropy of local pressure distribution and dissipation are essential in understanding the evolution of the internal structure of compact objects and their observable characteristics. In this work, we reinterpret local pressure anisotropy in relativistic stellar structures as a contribution to the energy density. This approach allows the modelling of any anisotropic equation of state in self-gravitating systems by treating anisotropy as a contribution. We demonstrate that this approach provides more realistic stellar models that meet essential physical criteria, such as mass-radius relationships and stability conditions. The results are compared to observational data, particularly the inferred compactness values for pulsars PSR J0740+6620 and PSR J0030+0451, showing that anisotropic and isotropic models can represent these objects. We further explore how dissipation, such as temperature gradients, influences radial pressure and show that it can be modelled similarly to anisotropy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3120693637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120693637</sourcerecordid><originalsourceid>FETCH-proquest_journals_31206936373</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC2nOtoqjKM7iLmebwpVwqb1E8O3t4AM4_cP_LVRmAcpiv7N2pXKRwRhj68ZWFWTqeHMeI71JKFKrOXAxorToCVn3PlGnUTTqzvEsProNHCd6pkiBN2rZoxeX_7pW28v5froW4xReyUl8DCFNPK8HlNbUB6ihgf_UFz34N7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120693637</pqid></control><display><type>article</type><title>Relativisitic non-pascalian fluid as a density contribution</title><source>Free E- Journals</source><creator>Ospino, Justo ; Suárez-Urango, Daniel ; Becerra, Laura M ; Hernández, Héctor ; Núñez, Luis A</creator><creatorcontrib>Ospino, Justo ; Suárez-Urango, Daniel ; Becerra, Laura M ; Hernández, Héctor ; Núñez, Luis A</creatorcontrib><description>Anisotropy of local pressure distribution and dissipation are essential in understanding the evolution of the internal structure of compact objects and their observable characteristics. In this work, we reinterpret local pressure anisotropy in relativistic stellar structures as a contribution to the energy density. This approach allows the modelling of any anisotropic equation of state in self-gravitating systems by treating anisotropy as a contribution. We demonstrate that this approach provides more realistic stellar models that meet essential physical criteria, such as mass-radius relationships and stability conditions. The results are compared to observational data, particularly the inferred compactness values for pulsars PSR J0740+6620 and PSR J0030+0451, showing that anisotropic and isotropic models can represent these objects. We further explore how dissipation, such as temperature gradients, influences radial pressure and show that it can be modelled similarly to anisotropy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Astronomical models ; Dissipation ; Energy distribution ; Equations of state ; Gravitation ; Pressure distribution ; Pulsars ; Stellar models</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ospino, Justo</creatorcontrib><creatorcontrib>Suárez-Urango, Daniel</creatorcontrib><creatorcontrib>Becerra, Laura M</creatorcontrib><creatorcontrib>Hernández, Héctor</creatorcontrib><creatorcontrib>Núñez, Luis A</creatorcontrib><title>Relativisitic non-pascalian fluid as a density contribution</title><title>arXiv.org</title><description>Anisotropy of local pressure distribution and dissipation are essential in understanding the evolution of the internal structure of compact objects and their observable characteristics. In this work, we reinterpret local pressure anisotropy in relativistic stellar structures as a contribution to the energy density. This approach allows the modelling of any anisotropic equation of state in self-gravitating systems by treating anisotropy as a contribution. We demonstrate that this approach provides more realistic stellar models that meet essential physical criteria, such as mass-radius relationships and stability conditions. The results are compared to observational data, particularly the inferred compactness values for pulsars PSR J0740+6620 and PSR J0030+0451, showing that anisotropic and isotropic models can represent these objects. We further explore how dissipation, such as temperature gradients, influences radial pressure and show that it can be modelled similarly to anisotropy.</description><subject>Anisotropy</subject><subject>Astronomical models</subject><subject>Dissipation</subject><subject>Energy distribution</subject><subject>Equations of state</subject><subject>Gravitation</subject><subject>Pressure distribution</subject><subject>Pulsars</subject><subject>Stellar models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC2nOtoqjKM7iLmebwpVwqb1E8O3t4AM4_cP_LVRmAcpiv7N2pXKRwRhj68ZWFWTqeHMeI71JKFKrOXAxorToCVn3PlGnUTTqzvEsProNHCd6pkiBN2rZoxeX_7pW28v5froW4xReyUl8DCFNPK8HlNbUB6ihgf_UFz34N7k</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Ospino, Justo</creator><creator>Suárez-Urango, Daniel</creator><creator>Becerra, Laura M</creator><creator>Hernández, Héctor</creator><creator>Núñez, Luis A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241030</creationdate><title>Relativisitic non-pascalian fluid as a density contribution</title><author>Ospino, Justo ; Suárez-Urango, Daniel ; Becerra, Laura M ; Hernández, Héctor ; Núñez, Luis A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31206936373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Astronomical models</topic><topic>Dissipation</topic><topic>Energy distribution</topic><topic>Equations of state</topic><topic>Gravitation</topic><topic>Pressure distribution</topic><topic>Pulsars</topic><topic>Stellar models</topic><toplevel>online_resources</toplevel><creatorcontrib>Ospino, Justo</creatorcontrib><creatorcontrib>Suárez-Urango, Daniel</creatorcontrib><creatorcontrib>Becerra, Laura M</creatorcontrib><creatorcontrib>Hernández, Héctor</creatorcontrib><creatorcontrib>Núñez, Luis A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ospino, Justo</au><au>Suárez-Urango, Daniel</au><au>Becerra, Laura M</au><au>Hernández, Héctor</au><au>Núñez, Luis A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Relativisitic non-pascalian fluid as a density contribution</atitle><jtitle>arXiv.org</jtitle><date>2024-10-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Anisotropy of local pressure distribution and dissipation are essential in understanding the evolution of the internal structure of compact objects and their observable characteristics. In this work, we reinterpret local pressure anisotropy in relativistic stellar structures as a contribution to the energy density. This approach allows the modelling of any anisotropic equation of state in self-gravitating systems by treating anisotropy as a contribution. We demonstrate that this approach provides more realistic stellar models that meet essential physical criteria, such as mass-radius relationships and stability conditions. The results are compared to observational data, particularly the inferred compactness values for pulsars PSR J0740+6620 and PSR J0030+0451, showing that anisotropic and isotropic models can represent these objects. We further explore how dissipation, such as temperature gradients, influences radial pressure and show that it can be modelled similarly to anisotropy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3120693637
source Free E- Journals
subjects Anisotropy
Astronomical models
Dissipation
Energy distribution
Equations of state
Gravitation
Pressure distribution
Pulsars
Stellar models
title Relativisitic non-pascalian fluid as a density contribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Relativisitic%20non-pascalian%20fluid%20as%20a%20density%20contribution&rft.jtitle=arXiv.org&rft.au=Ospino,%20Justo&rft.date=2024-10-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3120693637%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120693637&rft_id=info:pmid/&rfr_iscdi=true