Enhancement Method Based on Multi-Strategy Improved Pelican Optimization Algorithm and Application to Low-Illumination Forest Canopy Images
Enhancement is a crucial step in the field of image processing, as it significantly improves image analysis and understanding. One of the most commonly used methods for image contrast enhancement is the incomplete beta function (IBF). However, the key challenge lies in determining the optimal parame...
Gespeichert in:
Veröffentlicht in: | Forests 2024-10, Vol.15 (10), p.1783 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1783 |
container_title | Forests |
container_volume | 15 |
creator | Zhao, Xiaohan Zhu, Liangkuan Wang, Jingyu Mohamed, Alaa M. E. |
description | Enhancement is a crucial step in the field of image processing, as it significantly improves image analysis and understanding. One of the most commonly used methods for image contrast enhancement is the incomplete beta function (IBF). However, the key challenge lies in determining the optimal parameters for the IBF. This paper introduces a multi-strategy improved pelican optimization algorithm (MIPOA) to address the low-illumination color image enhancement problem. The MIPOA algorithm utilizes a nonlinear decreasing coefficient to boost the exploration ability and convergence speed, whereas the Hardy–Weinberg principle compensates for the unsound exploitation mechanism. Additionally, the diversity variation operation improves the ability of the algorithm to escape local optimal solutions. The performance of the proposed MIPOA algorithm was evaluated using a benchmark function and was found to outperform five variant algorithms in extensive comparisons. To further harness the potential of the MIPOA algorithm, the authors propose a low-light forest canopy image enhancement method based on the MIPOA algorithm. The MIPOA algorithm searches for the optimal parameters of the IBF, leading to fast contrast enhancement of the image. The segmented gamma correction function is designed to enhance the brightness of the low-light forest canopy images. In determining the optimal parameters of IBF, the MIPOA algorithm demonstrates superior performance compared to other intelligent algorithms in the feature similarity index (FSIM), entropy, and contrast improvement index (CII) of 75%, 58.33%, and 75%, respectively. The proposed MIPOA-based enhancement method achieves a moderate pixel mean and surpasses the conventional enhancement method with an average gradient of 91.67%. The experimental results indicate that the MIPOA effectively addresses the limitations of low optimization accuracy in IBF parameters, and the enhancement method based on the MIPOA provides a more efficacious approach for enhancing low-light forest canopy images. |
doi_str_mv | 10.3390/f15101783 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120656135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814117805</galeid><sourcerecordid>A814117805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-33b585af13e05139d9575c075a48ebcc5be8420880cd5899e2b382f93c22ac643</originalsourceid><addsrcrecordid>eNpNUc1OwzAMrhBITGMH3iASJw4dSdOsyXFMG0zaNCTgXKWp22Vqk5JmoPEKvDQZQwj7YMv-Pv9G0TXBY0oFvqsII5hknJ5FAyKEiFOBs_N__mU06vsdDsIyLpJ0EH3NzVYaBS0Yj9bgt7ZE97KHElmD1vvG6_jZO-mhPqBl2zn7HlJP0GglDdp0Xrf6U3odwNOmtk77bYukKdG0646Yn4y3aGU_4mXT7FttTrGFddB7NJPGdsfKsob-KrqoZNPD6NcOo9fF_GX2GK82D8vZdBWrJCE-prRgnMmKUMCMUFEKljGFMyZTDoVSrACeJphzrErGhYCkoDypBA10qSYpHUY3p7phnbd9GCPf2b0zoWVOSYInbEIoC6jxCVXLBnJtKhvuoIKW0GplDVQ6xKecpCScHB8JtyeCcrbvHVR553Qr3SEnOD_-J__7D_0Gi72CyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120656135</pqid></control><display><type>article</type><title>Enhancement Method Based on Multi-Strategy Improved Pelican Optimization Algorithm and Application to Low-Illumination Forest Canopy Images</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhao, Xiaohan ; Zhu, Liangkuan ; Wang, Jingyu ; Mohamed, Alaa M. E.</creator><creatorcontrib>Zhao, Xiaohan ; Zhu, Liangkuan ; Wang, Jingyu ; Mohamed, Alaa M. E.</creatorcontrib><description>Enhancement is a crucial step in the field of image processing, as it significantly improves image analysis and understanding. One of the most commonly used methods for image contrast enhancement is the incomplete beta function (IBF). However, the key challenge lies in determining the optimal parameters for the IBF. This paper introduces a multi-strategy improved pelican optimization algorithm (MIPOA) to address the low-illumination color image enhancement problem. The MIPOA algorithm utilizes a nonlinear decreasing coefficient to boost the exploration ability and convergence speed, whereas the Hardy–Weinberg principle compensates for the unsound exploitation mechanism. Additionally, the diversity variation operation improves the ability of the algorithm to escape local optimal solutions. The performance of the proposed MIPOA algorithm was evaluated using a benchmark function and was found to outperform five variant algorithms in extensive comparisons. To further harness the potential of the MIPOA algorithm, the authors propose a low-light forest canopy image enhancement method based on the MIPOA algorithm. The MIPOA algorithm searches for the optimal parameters of the IBF, leading to fast contrast enhancement of the image. The segmented gamma correction function is designed to enhance the brightness of the low-light forest canopy images. In determining the optimal parameters of IBF, the MIPOA algorithm demonstrates superior performance compared to other intelligent algorithms in the feature similarity index (FSIM), entropy, and contrast improvement index (CII) of 75%, 58.33%, and 75%, respectively. The proposed MIPOA-based enhancement method achieves a moderate pixel mean and surpasses the conventional enhancement method with an average gradient of 91.67%. The experimental results indicate that the MIPOA effectively addresses the limitations of low optimization accuracy in IBF parameters, and the enhancement method based on the MIPOA provides a more efficacious approach for enhancing low-light forest canopy images.</description><identifier>ISSN: 1999-4907</identifier><identifier>EISSN: 1999-4907</identifier><identifier>DOI: 10.3390/f15101783</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Canopies ; Color imagery ; Forests ; Illumination ; Image analysis ; Image contrast ; Image enhancement ; Image processing ; Mathematical models ; Mathematical optimization ; Methods ; Optimization ; Optimization algorithms ; Parameters ; Performance evaluation</subject><ispartof>Forests, 2024-10, Vol.15 (10), p.1783</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-33b585af13e05139d9575c075a48ebcc5be8420880cd5899e2b382f93c22ac643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Xiaohan</creatorcontrib><creatorcontrib>Zhu, Liangkuan</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Mohamed, Alaa M. E.</creatorcontrib><title>Enhancement Method Based on Multi-Strategy Improved Pelican Optimization Algorithm and Application to Low-Illumination Forest Canopy Images</title><title>Forests</title><description>Enhancement is a crucial step in the field of image processing, as it significantly improves image analysis and understanding. One of the most commonly used methods for image contrast enhancement is the incomplete beta function (IBF). However, the key challenge lies in determining the optimal parameters for the IBF. This paper introduces a multi-strategy improved pelican optimization algorithm (MIPOA) to address the low-illumination color image enhancement problem. The MIPOA algorithm utilizes a nonlinear decreasing coefficient to boost the exploration ability and convergence speed, whereas the Hardy–Weinberg principle compensates for the unsound exploitation mechanism. Additionally, the diversity variation operation improves the ability of the algorithm to escape local optimal solutions. The performance of the proposed MIPOA algorithm was evaluated using a benchmark function and was found to outperform five variant algorithms in extensive comparisons. To further harness the potential of the MIPOA algorithm, the authors propose a low-light forest canopy image enhancement method based on the MIPOA algorithm. The MIPOA algorithm searches for the optimal parameters of the IBF, leading to fast contrast enhancement of the image. The segmented gamma correction function is designed to enhance the brightness of the low-light forest canopy images. In determining the optimal parameters of IBF, the MIPOA algorithm demonstrates superior performance compared to other intelligent algorithms in the feature similarity index (FSIM), entropy, and contrast improvement index (CII) of 75%, 58.33%, and 75%, respectively. The proposed MIPOA-based enhancement method achieves a moderate pixel mean and surpasses the conventional enhancement method with an average gradient of 91.67%. The experimental results indicate that the MIPOA effectively addresses the limitations of low optimization accuracy in IBF parameters, and the enhancement method based on the MIPOA provides a more efficacious approach for enhancing low-light forest canopy images.</description><subject>Algorithms</subject><subject>Canopies</subject><subject>Color imagery</subject><subject>Forests</subject><subject>Illumination</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Performance evaluation</subject><issn>1999-4907</issn><issn>1999-4907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUc1OwzAMrhBITGMH3iASJw4dSdOsyXFMG0zaNCTgXKWp22Vqk5JmoPEKvDQZQwj7YMv-Pv9G0TXBY0oFvqsII5hknJ5FAyKEiFOBs_N__mU06vsdDsIyLpJ0EH3NzVYaBS0Yj9bgt7ZE97KHElmD1vvG6_jZO-mhPqBl2zn7HlJP0GglDdp0Xrf6U3odwNOmtk77bYukKdG0646Yn4y3aGU_4mXT7FttTrGFddB7NJPGdsfKsob-KrqoZNPD6NcOo9fF_GX2GK82D8vZdBWrJCE-prRgnMmKUMCMUFEKljGFMyZTDoVSrACeJphzrErGhYCkoDypBA10qSYpHUY3p7phnbd9GCPf2b0zoWVOSYInbEIoC6jxCVXLBnJtKhvuoIKW0GplDVQ6xKecpCScHB8JtyeCcrbvHVR553Qr3SEnOD_-J__7D_0Gi72CyQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhao, Xiaohan</creator><creator>Zhu, Liangkuan</creator><creator>Wang, Jingyu</creator><creator>Mohamed, Alaa M. E.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20241001</creationdate><title>Enhancement Method Based on Multi-Strategy Improved Pelican Optimization Algorithm and Application to Low-Illumination Forest Canopy Images</title><author>Zhao, Xiaohan ; Zhu, Liangkuan ; Wang, Jingyu ; Mohamed, Alaa M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-33b585af13e05139d9575c075a48ebcc5be8420880cd5899e2b382f93c22ac643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Canopies</topic><topic>Color imagery</topic><topic>Forests</topic><topic>Illumination</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Performance evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiaohan</creatorcontrib><creatorcontrib>Zhu, Liangkuan</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Mohamed, Alaa M. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiaohan</au><au>Zhu, Liangkuan</au><au>Wang, Jingyu</au><au>Mohamed, Alaa M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement Method Based on Multi-Strategy Improved Pelican Optimization Algorithm and Application to Low-Illumination Forest Canopy Images</atitle><jtitle>Forests</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>15</volume><issue>10</issue><spage>1783</spage><pages>1783-</pages><issn>1999-4907</issn><eissn>1999-4907</eissn><abstract>Enhancement is a crucial step in the field of image processing, as it significantly improves image analysis and understanding. One of the most commonly used methods for image contrast enhancement is the incomplete beta function (IBF). However, the key challenge lies in determining the optimal parameters for the IBF. This paper introduces a multi-strategy improved pelican optimization algorithm (MIPOA) to address the low-illumination color image enhancement problem. The MIPOA algorithm utilizes a nonlinear decreasing coefficient to boost the exploration ability and convergence speed, whereas the Hardy–Weinberg principle compensates for the unsound exploitation mechanism. Additionally, the diversity variation operation improves the ability of the algorithm to escape local optimal solutions. The performance of the proposed MIPOA algorithm was evaluated using a benchmark function and was found to outperform five variant algorithms in extensive comparisons. To further harness the potential of the MIPOA algorithm, the authors propose a low-light forest canopy image enhancement method based on the MIPOA algorithm. The MIPOA algorithm searches for the optimal parameters of the IBF, leading to fast contrast enhancement of the image. The segmented gamma correction function is designed to enhance the brightness of the low-light forest canopy images. In determining the optimal parameters of IBF, the MIPOA algorithm demonstrates superior performance compared to other intelligent algorithms in the feature similarity index (FSIM), entropy, and contrast improvement index (CII) of 75%, 58.33%, and 75%, respectively. The proposed MIPOA-based enhancement method achieves a moderate pixel mean and surpasses the conventional enhancement method with an average gradient of 91.67%. The experimental results indicate that the MIPOA effectively addresses the limitations of low optimization accuracy in IBF parameters, and the enhancement method based on the MIPOA provides a more efficacious approach for enhancing low-light forest canopy images.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/f15101783</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-4907 |
ispartof | Forests, 2024-10, Vol.15 (10), p.1783 |
issn | 1999-4907 1999-4907 |
language | eng |
recordid | cdi_proquest_journals_3120656135 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Canopies Color imagery Forests Illumination Image analysis Image contrast Image enhancement Image processing Mathematical models Mathematical optimization Methods Optimization Optimization algorithms Parameters Performance evaluation |
title | Enhancement Method Based on Multi-Strategy Improved Pelican Optimization Algorithm and Application to Low-Illumination Forest Canopy Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20Method%20Based%20on%20Multi-Strategy%20Improved%20Pelican%20Optimization%20Algorithm%20and%20Application%20to%20Low-Illumination%20Forest%20Canopy%20Images&rft.jtitle=Forests&rft.au=Zhao,%20Xiaohan&rft.date=2024-10-01&rft.volume=15&rft.issue=10&rft.spage=1783&rft.pages=1783-&rft.issn=1999-4907&rft.eissn=1999-4907&rft_id=info:doi/10.3390/f15101783&rft_dat=%3Cgale_proqu%3EA814117805%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120656135&rft_id=info:pmid/&rft_galeid=A814117805&rfr_iscdi=true |