Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation
In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-11, Vol.69 (11), p.8041-8048 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8048 |
---|---|
container_issue | 11 |
container_start_page | 8041 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Giaccagli, Mattia Zoboli, Samuele Astolfi, Daniele Andrieu, Vincent Casadei, Giacomo |
description | In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation. |
doi_str_mv | 10.1109/TAC.2024.3407015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3120656126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10541048</ieee_id><sourcerecordid>3120656126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-4c76253aa6a354d7bf5ddf7cc4e2bf863fb0f2c1a003d7907008e5ae66a382783</originalsourceid><addsrcrecordid>eNpNkc1uUzEQha0KpIbCngULS6xY3DD-vQ67KLS0UigSLWvL8R1Tt4kd7Nui8AK8dp2mQqxGM_rmjOYcQt4ymDIGs4_X88WUA5dTIaEHpo7IhCllOq64eEEmAMx0M270MXlV621rtZRsQv5e7ZK_KTnFP26MOdGY6CWOv3O5qzQHepnTOiZ0hV7t6oib-okuchqL80_0PLn1rsZKH6Kj3yNuXErRJfoVxxJ9pS4N9DPitls2iRTTTxpyoWeIw8r5O3pax7h5uvuavAxuXfHNcz0hP85Orxfn3fLbl4vFfNl5DrOxk77XXAnntBNKDv0qqGEIvfcS-SoYLcIKAvfMAYihnzUnwKByqBtveG_ECflw0L1xa7st7XrZ2eyiPZ8v7X4GwkAzFB5EY98f2G3Jv-6xjvY235f2cbWCcdBKM64bBQfKl1xrwfBPloHdR2NbNHYfjX2Opq28O6xERPwPV5KBNOIRaUWLOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120656126</pqid></control><display><type>article</type><title>Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Giaccagli, Mattia ; Zoboli, Samuele ; Astolfi, Daniele ; Andrieu, Vincent ; Casadei, Giacomo</creator><creatorcontrib>Giaccagli, Mattia ; Zoboli, Samuele ; Astolfi, Daniele ; Andrieu, Vincent ; Casadei, Giacomo</creatorcontrib><description>In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3407015</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computer Science ; Contraction ; Couplings ; deep learning ; deep neural network (DNN) ; incremental stability ; Machine learning ; Measurement ; multiagent systems ; Nonlinear systems ; State feedback ; Synchronism ; Synchronization ; Systems and Control ; Time synchronization ; Time varying control systems ; Trajectory ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8041-8048</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-4c76253aa6a354d7bf5ddf7cc4e2bf863fb0f2c1a003d7907008e5ae66a382783</cites><orcidid>0000-0003-1877-6205 ; 0000-0002-6597-1137 ; 0009-0006-9225-4551 ; 0000-0003-3073-6900 ; 0000-0003-2690-7420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10541048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10541048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03801100$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giaccagli, Mattia</creatorcontrib><creatorcontrib>Zoboli, Samuele</creatorcontrib><creatorcontrib>Astolfi, Daniele</creatorcontrib><creatorcontrib>Andrieu, Vincent</creatorcontrib><creatorcontrib>Casadei, Giacomo</creatorcontrib><title>Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Contraction</subject><subject>Couplings</subject><subject>deep learning</subject><subject>deep neural network (DNN)</subject><subject>incremental stability</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multiagent systems</subject><subject>Nonlinear systems</subject><subject>State feedback</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Systems and Control</subject><subject>Time synchronization</subject><subject>Time varying control systems</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkc1uUzEQha0KpIbCngULS6xY3DD-vQ67KLS0UigSLWvL8R1Tt4kd7Nui8AK8dp2mQqxGM_rmjOYcQt4ymDIGs4_X88WUA5dTIaEHpo7IhCllOq64eEEmAMx0M270MXlV621rtZRsQv5e7ZK_KTnFP26MOdGY6CWOv3O5qzQHepnTOiZ0hV7t6oib-okuchqL80_0PLn1rsZKH6Kj3yNuXErRJfoVxxJ9pS4N9DPitls2iRTTTxpyoWeIw8r5O3pax7h5uvuavAxuXfHNcz0hP85Orxfn3fLbl4vFfNl5DrOxk77XXAnntBNKDv0qqGEIvfcS-SoYLcIKAvfMAYihnzUnwKByqBtveG_ECflw0L1xa7st7XrZ2eyiPZ8v7X4GwkAzFB5EY98f2G3Jv-6xjvY235f2cbWCcdBKM64bBQfKl1xrwfBPloHdR2NbNHYfjX2Opq28O6xERPwPV5KBNOIRaUWLOA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Giaccagli, Mattia</creator><creator>Zoboli, Samuele</creator><creator>Astolfi, Daniele</creator><creator>Andrieu, Vincent</creator><creator>Casadei, Giacomo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1877-6205</orcidid><orcidid>https://orcid.org/0000-0002-6597-1137</orcidid><orcidid>https://orcid.org/0009-0006-9225-4551</orcidid><orcidid>https://orcid.org/0000-0003-3073-6900</orcidid><orcidid>https://orcid.org/0000-0003-2690-7420</orcidid></search><sort><creationdate>20241101</creationdate><title>Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation</title><author>Giaccagli, Mattia ; Zoboli, Samuele ; Astolfi, Daniele ; Andrieu, Vincent ; Casadei, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-4c76253aa6a354d7bf5ddf7cc4e2bf863fb0f2c1a003d7907008e5ae66a382783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Contraction</topic><topic>Couplings</topic><topic>deep learning</topic><topic>deep neural network (DNN)</topic><topic>incremental stability</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multiagent systems</topic><topic>Nonlinear systems</topic><topic>State feedback</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Systems and Control</topic><topic>Time synchronization</topic><topic>Time varying control systems</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giaccagli, Mattia</creatorcontrib><creatorcontrib>Zoboli, Samuele</creatorcontrib><creatorcontrib>Astolfi, Daniele</creatorcontrib><creatorcontrib>Andrieu, Vincent</creatorcontrib><creatorcontrib>Casadei, Giacomo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giaccagli, Mattia</au><au>Zoboli, Samuele</au><au>Astolfi, Daniele</au><au>Andrieu, Vincent</au><au>Casadei, Giacomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>8041</spage><epage>8048</epage><pages>8041-8048</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3407015</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1877-6205</orcidid><orcidid>https://orcid.org/0000-0002-6597-1137</orcidid><orcidid>https://orcid.org/0009-0006-9225-4551</orcidid><orcidid>https://orcid.org/0000-0003-3073-6900</orcidid><orcidid>https://orcid.org/0000-0003-2690-7420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8041-8048 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_3120656126 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Computer Science Contraction Couplings deep learning deep neural network (DNN) incremental stability Machine learning Measurement multiagent systems Nonlinear systems State feedback Synchronism Synchronization Systems and Control Time synchronization Time varying control systems Trajectory Vectors |
title | Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20in%20Networks%20of%20Nonlinear%20Systems:%20Contraction%20Analysis%20via%20Riemannian%20Metrics%20and%20Deep-Learning%20for%20Feedback%20Estimation&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Giaccagli,%20Mattia&rft.date=2024-11-01&rft.volume=69&rft.issue=11&rft.spage=8041&rft.epage=8048&rft.pages=8041-8048&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3407015&rft_dat=%3Cproquest_RIE%3E3120656126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120656126&rft_id=info:pmid/&rft_ieee_id=10541048&rfr_iscdi=true |