Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation

In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-11, Vol.69 (11), p.8041-8048
Hauptverfasser: Giaccagli, Mattia, Zoboli, Samuele, Astolfi, Daniele, Andrieu, Vincent, Casadei, Giacomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8048
container_issue 11
container_start_page 8041
container_title IEEE transactions on automatic control
container_volume 69
creator Giaccagli, Mattia
Zoboli, Samuele
Astolfi, Daniele
Andrieu, Vincent
Casadei, Giacomo
description In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation.
doi_str_mv 10.1109/TAC.2024.3407015
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3120656126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10541048</ieee_id><sourcerecordid>3120656126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-4c76253aa6a354d7bf5ddf7cc4e2bf863fb0f2c1a003d7907008e5ae66a382783</originalsourceid><addsrcrecordid>eNpNkc1uUzEQha0KpIbCngULS6xY3DD-vQ67KLS0UigSLWvL8R1Tt4kd7Nui8AK8dp2mQqxGM_rmjOYcQt4ymDIGs4_X88WUA5dTIaEHpo7IhCllOq64eEEmAMx0M270MXlV621rtZRsQv5e7ZK_KTnFP26MOdGY6CWOv3O5qzQHepnTOiZ0hV7t6oib-okuchqL80_0PLn1rsZKH6Kj3yNuXErRJfoVxxJ9pS4N9DPitls2iRTTTxpyoWeIw8r5O3pax7h5uvuavAxuXfHNcz0hP85Orxfn3fLbl4vFfNl5DrOxk77XXAnntBNKDv0qqGEIvfcS-SoYLcIKAvfMAYihnzUnwKByqBtveG_ECflw0L1xa7st7XrZ2eyiPZ8v7X4GwkAzFB5EY98f2G3Jv-6xjvY235f2cbWCcdBKM64bBQfKl1xrwfBPloHdR2NbNHYfjX2Opq28O6xERPwPV5KBNOIRaUWLOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120656126</pqid></control><display><type>article</type><title>Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Giaccagli, Mattia ; Zoboli, Samuele ; Astolfi, Daniele ; Andrieu, Vincent ; Casadei, Giacomo</creator><creatorcontrib>Giaccagli, Mattia ; Zoboli, Samuele ; Astolfi, Daniele ; Andrieu, Vincent ; Casadei, Giacomo</creatorcontrib><description>In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3407015</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computer Science ; Contraction ; Couplings ; deep learning ; deep neural network (DNN) ; incremental stability ; Machine learning ; Measurement ; multiagent systems ; Nonlinear systems ; State feedback ; Synchronism ; Synchronization ; Systems and Control ; Time synchronization ; Time varying control systems ; Trajectory ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8041-8048</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-4c76253aa6a354d7bf5ddf7cc4e2bf863fb0f2c1a003d7907008e5ae66a382783</cites><orcidid>0000-0003-1877-6205 ; 0000-0002-6597-1137 ; 0009-0006-9225-4551 ; 0000-0003-3073-6900 ; 0000-0003-2690-7420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10541048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10541048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03801100$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giaccagli, Mattia</creatorcontrib><creatorcontrib>Zoboli, Samuele</creatorcontrib><creatorcontrib>Astolfi, Daniele</creatorcontrib><creatorcontrib>Andrieu, Vincent</creatorcontrib><creatorcontrib>Casadei, Giacomo</creatorcontrib><title>Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Contraction</subject><subject>Couplings</subject><subject>deep learning</subject><subject>deep neural network (DNN)</subject><subject>incremental stability</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multiagent systems</subject><subject>Nonlinear systems</subject><subject>State feedback</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Systems and Control</subject><subject>Time synchronization</subject><subject>Time varying control systems</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkc1uUzEQha0KpIbCngULS6xY3DD-vQ67KLS0UigSLWvL8R1Tt4kd7Nui8AK8dp2mQqxGM_rmjOYcQt4ymDIGs4_X88WUA5dTIaEHpo7IhCllOq64eEEmAMx0M270MXlV621rtZRsQv5e7ZK_KTnFP26MOdGY6CWOv3O5qzQHepnTOiZ0hV7t6oib-okuchqL80_0PLn1rsZKH6Kj3yNuXErRJfoVxxJ9pS4N9DPitls2iRTTTxpyoWeIw8r5O3pax7h5uvuavAxuXfHNcz0hP85Orxfn3fLbl4vFfNl5DrOxk77XXAnntBNKDv0qqGEIvfcS-SoYLcIKAvfMAYihnzUnwKByqBtveG_ECflw0L1xa7st7XrZ2eyiPZ8v7X4GwkAzFB5EY98f2G3Jv-6xjvY235f2cbWCcdBKM64bBQfKl1xrwfBPloHdR2NbNHYfjX2Opq28O6xERPwPV5KBNOIRaUWLOA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Giaccagli, Mattia</creator><creator>Zoboli, Samuele</creator><creator>Astolfi, Daniele</creator><creator>Andrieu, Vincent</creator><creator>Casadei, Giacomo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1877-6205</orcidid><orcidid>https://orcid.org/0000-0002-6597-1137</orcidid><orcidid>https://orcid.org/0009-0006-9225-4551</orcidid><orcidid>https://orcid.org/0000-0003-3073-6900</orcidid><orcidid>https://orcid.org/0000-0003-2690-7420</orcidid></search><sort><creationdate>20241101</creationdate><title>Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation</title><author>Giaccagli, Mattia ; Zoboli, Samuele ; Astolfi, Daniele ; Andrieu, Vincent ; Casadei, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-4c76253aa6a354d7bf5ddf7cc4e2bf863fb0f2c1a003d7907008e5ae66a382783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Contraction</topic><topic>Couplings</topic><topic>deep learning</topic><topic>deep neural network (DNN)</topic><topic>incremental stability</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multiagent systems</topic><topic>Nonlinear systems</topic><topic>State feedback</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Systems and Control</topic><topic>Time synchronization</topic><topic>Time varying control systems</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giaccagli, Mattia</creatorcontrib><creatorcontrib>Zoboli, Samuele</creatorcontrib><creatorcontrib>Astolfi, Daniele</creatorcontrib><creatorcontrib>Andrieu, Vincent</creatorcontrib><creatorcontrib>Casadei, Giacomo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giaccagli, Mattia</au><au>Zoboli, Samuele</au><au>Astolfi, Daniele</au><au>Andrieu, Vincent</au><au>Casadei, Giacomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>8041</spage><epage>8048</epage><pages>8041-8048</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this article, we consider the problem of exponential synchronization of a network of identical input-affine nonlinear time-varying systems connected through an undirected graph, in the presence of a leader. We tackle the problem with incremental stability tools. We propose sufficient metric-based conditions to design a distributed diffusive coupling feedback law in two frameworks. First, we consider a state feedback design, where synchronization is obtained for every initial condition. Then, we show that synchronization can still be achieved regionally under milder assumptions. To balance the analytical difficulties of computing the proposed controller, we develop an algorithm based on deep neural networks (DNNs) for practical implementation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3407015</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1877-6205</orcidid><orcidid>https://orcid.org/0000-0002-6597-1137</orcidid><orcidid>https://orcid.org/0009-0006-9225-4551</orcidid><orcidid>https://orcid.org/0000-0003-3073-6900</orcidid><orcidid>https://orcid.org/0000-0003-2690-7420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8041-8048
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_3120656126
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Computer Science
Contraction
Couplings
deep learning
deep neural network (DNN)
incremental stability
Machine learning
Measurement
multiagent systems
Nonlinear systems
State feedback
Synchronism
Synchronization
Systems and Control
Time synchronization
Time varying control systems
Trajectory
Vectors
title Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20in%20Networks%20of%20Nonlinear%20Systems:%20Contraction%20Analysis%20via%20Riemannian%20Metrics%20and%20Deep-Learning%20for%20Feedback%20Estimation&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Giaccagli,%20Mattia&rft.date=2024-11-01&rft.volume=69&rft.issue=11&rft.spage=8041&rft.epage=8048&rft.pages=8041-8048&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3407015&rft_dat=%3Cproquest_RIE%3E3120656126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120656126&rft_id=info:pmid/&rft_ieee_id=10541048&rfr_iscdi=true