An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT

To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-10, Vol.13 (20), p.4047
Hauptverfasser: Zhao, Wei, Tan, Ao, Ren, Congcong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 4047
container_title Electronics (Basel)
container_volume 13
creator Zhao, Wei
Tan, Ao
Ren, Congcong
description To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness.
doi_str_mv 10.3390/electronics13204047
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120641754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814387983</galeid><sourcerecordid>A814387983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-ca053a46eac5dd8e9a07398f581af3ea3ad5c679f7fe18bd69c8f34f888a412d3</originalsourceid><addsrcrecordid>eNptkU1PwzAMhisEEgj4BVwicS4kTT8SbtX4lJA2IThXJnVGpjYZSTbYhd9OYAhxwD7Ysp_XPrxZdsLoGeeSnuOAKnpnjQqMF7SkZbOTHRS0kbksZLH7p9_PjkNY0BSSccHpQfbRWnJnrVtDNGskM4gvZDaAtcbOSTvMnTfxZSTaeTJx43LAdzJ9DhHUgOTKrk36O6KNgbwljrQ9LL_v_DKXaIOJm7RZrEL8Qi9IO71s89l1_vDweJTtaRgCHv_Uw-zp-upxcpvfT2_uJu19rpisY66AVhzKGkFVfS9QAm24FLoSDDRH4NBXqm6kbjQy8dzXUgnNSy2EgJIVPT_MTrd3l969rjDEbuFW3qaXHWcFrUvWVGWizrbUHAbsjNUuelApexyNcha1SfNWsJKLRgqeBHwrUN6F4FF3S29G8JuO0e7LnO4fc_gn0ruGgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120641754</pqid></control><display><type>article</type><title>An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Zhao, Wei ; Tan, Ao ; Ren, Congcong</creator><creatorcontrib>Zhao, Wei ; Tan, Ao ; Ren, Congcong</creatorcontrib><description>To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13204047</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptability ; Adaptive algorithms ; Algorithms ; Asymptotic series ; Barriers ; Density ; Efficiency ; Expansion ; Heuristic ; Optimization ; Path planning ; Robots ; Specific gravity ; Trees</subject><ispartof>Electronics (Basel), 2024-10, Vol.13 (20), p.4047</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-ca053a46eac5dd8e9a07398f581af3ea3ad5c679f7fe18bd69c8f34f888a412d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Tan, Ao</creatorcontrib><creatorcontrib>Ren, Congcong</creatorcontrib><title>An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT</title><title>Electronics (Basel)</title><description>To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness.</description><subject>Adaptability</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Asymptotic series</subject><subject>Barriers</subject><subject>Density</subject><subject>Efficiency</subject><subject>Expansion</subject><subject>Heuristic</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Robots</subject><subject>Specific gravity</subject><subject>Trees</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkU1PwzAMhisEEgj4BVwicS4kTT8SbtX4lJA2IThXJnVGpjYZSTbYhd9OYAhxwD7Ysp_XPrxZdsLoGeeSnuOAKnpnjQqMF7SkZbOTHRS0kbksZLH7p9_PjkNY0BSSccHpQfbRWnJnrVtDNGskM4gvZDaAtcbOSTvMnTfxZSTaeTJx43LAdzJ9DhHUgOTKrk36O6KNgbwljrQ9LL_v_DKXaIOJm7RZrEL8Qi9IO71s89l1_vDweJTtaRgCHv_Uw-zp-upxcpvfT2_uJu19rpisY66AVhzKGkFVfS9QAm24FLoSDDRH4NBXqm6kbjQy8dzXUgnNSy2EgJIVPT_MTrd3l969rjDEbuFW3qaXHWcFrUvWVGWizrbUHAbsjNUuelApexyNcha1SfNWsJKLRgqeBHwrUN6F4FF3S29G8JuO0e7LnO4fc_gn0ruGgQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhao, Wei</creator><creator>Tan, Ao</creator><creator>Ren, Congcong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241001</creationdate><title>An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT</title><author>Zhao, Wei ; Tan, Ao ; Ren, Congcong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-ca053a46eac5dd8e9a07398f581af3ea3ad5c679f7fe18bd69c8f34f888a412d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptability</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Asymptotic series</topic><topic>Barriers</topic><topic>Density</topic><topic>Efficiency</topic><topic>Expansion</topic><topic>Heuristic</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Robots</topic><topic>Specific gravity</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Tan, Ao</creatorcontrib><creatorcontrib>Ren, Congcong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wei</au><au>Tan, Ao</au><au>Ren, Congcong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>13</volume><issue>20</issue><spage>4047</spage><pages>4047-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13204047</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-10, Vol.13 (20), p.4047
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3120641754
source MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library
subjects Adaptability
Adaptive algorithms
Algorithms
Asymptotic series
Barriers
Density
Efficiency
Expansion
Heuristic
Optimization
Path planning
Robots
Specific gravity
Trees
title An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Innovative%20Path%20Planning%20Algorithm%20for%20Complex%20Obstacle%20Environments%20with%20Adaptive%20Obstacle%20Density%20Adjustment:%20AODA-PF-RRT&rft.jtitle=Electronics%20(Basel)&rft.au=Zhao,%20Wei&rft.date=2024-10-01&rft.volume=13&rft.issue=20&rft.spage=4047&rft.pages=4047-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13204047&rft_dat=%3Cgale_proqu%3EA814387983%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120641754&rft_id=info:pmid/&rft_galeid=A814387983&rfr_iscdi=true