An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT
To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-10, Vol.13 (20), p.4047 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 4047 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Zhao, Wei Tan, Ao Ren, Congcong |
description | To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness. |
doi_str_mv | 10.3390/electronics13204047 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120641754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814387983</galeid><sourcerecordid>A814387983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-ca053a46eac5dd8e9a07398f581af3ea3ad5c679f7fe18bd69c8f34f888a412d3</originalsourceid><addsrcrecordid>eNptkU1PwzAMhisEEgj4BVwicS4kTT8SbtX4lJA2IThXJnVGpjYZSTbYhd9OYAhxwD7Ysp_XPrxZdsLoGeeSnuOAKnpnjQqMF7SkZbOTHRS0kbksZLH7p9_PjkNY0BSSccHpQfbRWnJnrVtDNGskM4gvZDaAtcbOSTvMnTfxZSTaeTJx43LAdzJ9DhHUgOTKrk36O6KNgbwljrQ9LL_v_DKXaIOJm7RZrEL8Qi9IO71s89l1_vDweJTtaRgCHv_Uw-zp-upxcpvfT2_uJu19rpisY66AVhzKGkFVfS9QAm24FLoSDDRH4NBXqm6kbjQy8dzXUgnNSy2EgJIVPT_MTrd3l969rjDEbuFW3qaXHWcFrUvWVGWizrbUHAbsjNUuelApexyNcha1SfNWsJKLRgqeBHwrUN6F4FF3S29G8JuO0e7LnO4fc_gn0ruGgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120641754</pqid></control><display><type>article</type><title>An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Zhao, Wei ; Tan, Ao ; Ren, Congcong</creator><creatorcontrib>Zhao, Wei ; Tan, Ao ; Ren, Congcong</creatorcontrib><description>To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13204047</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptability ; Adaptive algorithms ; Algorithms ; Asymptotic series ; Barriers ; Density ; Efficiency ; Expansion ; Heuristic ; Optimization ; Path planning ; Robots ; Specific gravity ; Trees</subject><ispartof>Electronics (Basel), 2024-10, Vol.13 (20), p.4047</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-ca053a46eac5dd8e9a07398f581af3ea3ad5c679f7fe18bd69c8f34f888a412d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Tan, Ao</creatorcontrib><creatorcontrib>Ren, Congcong</creatorcontrib><title>An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT</title><title>Electronics (Basel)</title><description>To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness.</description><subject>Adaptability</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Asymptotic series</subject><subject>Barriers</subject><subject>Density</subject><subject>Efficiency</subject><subject>Expansion</subject><subject>Heuristic</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Robots</subject><subject>Specific gravity</subject><subject>Trees</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkU1PwzAMhisEEgj4BVwicS4kTT8SbtX4lJA2IThXJnVGpjYZSTbYhd9OYAhxwD7Ysp_XPrxZdsLoGeeSnuOAKnpnjQqMF7SkZbOTHRS0kbksZLH7p9_PjkNY0BSSccHpQfbRWnJnrVtDNGskM4gvZDaAtcbOSTvMnTfxZSTaeTJx43LAdzJ9DhHUgOTKrk36O6KNgbwljrQ9LL_v_DKXaIOJm7RZrEL8Qi9IO71s89l1_vDweJTtaRgCHv_Uw-zp-upxcpvfT2_uJu19rpisY66AVhzKGkFVfS9QAm24FLoSDDRH4NBXqm6kbjQy8dzXUgnNSy2EgJIVPT_MTrd3l969rjDEbuFW3qaXHWcFrUvWVGWizrbUHAbsjNUuelApexyNcha1SfNWsJKLRgqeBHwrUN6F4FF3S29G8JuO0e7LnO4fc_gn0ruGgQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhao, Wei</creator><creator>Tan, Ao</creator><creator>Ren, Congcong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241001</creationdate><title>An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT</title><author>Zhao, Wei ; Tan, Ao ; Ren, Congcong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-ca053a46eac5dd8e9a07398f581af3ea3ad5c679f7fe18bd69c8f34f888a412d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptability</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Asymptotic series</topic><topic>Barriers</topic><topic>Density</topic><topic>Efficiency</topic><topic>Expansion</topic><topic>Heuristic</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Robots</topic><topic>Specific gravity</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Tan, Ao</creatorcontrib><creatorcontrib>Ren, Congcong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wei</au><au>Tan, Ao</au><au>Ren, Congcong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>13</volume><issue>20</issue><spage>4047</spage><pages>4047-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13204047</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-10, Vol.13 (20), p.4047 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3120641754 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Adaptability Adaptive algorithms Algorithms Asymptotic series Barriers Density Efficiency Expansion Heuristic Optimization Path planning Robots Specific gravity Trees |
title | An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle Density Adjustment: AODA-PF-RRT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Innovative%20Path%20Planning%20Algorithm%20for%20Complex%20Obstacle%20Environments%20with%20Adaptive%20Obstacle%20Density%20Adjustment:%20AODA-PF-RRT&rft.jtitle=Electronics%20(Basel)&rft.au=Zhao,%20Wei&rft.date=2024-10-01&rft.volume=13&rft.issue=20&rft.spage=4047&rft.pages=4047-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13204047&rft_dat=%3Cgale_proqu%3EA814387983%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120641754&rft_id=info:pmid/&rft_galeid=A814387983&rfr_iscdi=true |