Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications
Plasmonic structural color originates from the scattering and absorption of visible light by metallic nanostructures. Stacks consisting of thin, disordered semicontinuous metal films are attractive plasmonic color media, as they can be mass-produced using industry-proven physical vapor deposition te...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2024-10, Vol.14 (10), p.1298 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1298 |
container_title | Coatings (Basel) |
container_volume | 14 |
creator | Nowak, Michał P. Stępak, Bogusz Pielach, Mateusz Stepanenko, Yuriy Wojciechowski, Tomasz Bartosewicz, Bartosz Chodorow, Urszula Jakubaszek, Marcin Wachulak, Przemysław Nyga, Piotr |
description | Plasmonic structural color originates from the scattering and absorption of visible light by metallic nanostructures. Stacks consisting of thin, disordered semicontinuous metal films are attractive plasmonic color media, as they can be mass-produced using industry-proven physical vapor deposition techniques. These films are comprised of random nano-island structures of various sizes and shapes resonating at different wavelengths. When irradiated with short-pulse lasers, the nanostructures are locally restructured, and their optical response is altered in a spectrally selective manner. Therefore, various colors are obtained. We demonstrate the generation of structural plasmonic colors through femtosecond laser modification of a thin aluminum film–isolator–metal mirror (TAFIM) structure. Laser-induced structuring of TAFIM’s top aluminum film significantly alters the sample’s specular and diffuse reflectance depending on the fluence value and the number of times a region is scanned. A “negative image” effect is possible, where a dark field observation mode image is a negative of a bright field mode image. This effect is visible using an optical microscope, the naked eye, and a digital camera. The use of self-passivating aluminum results in a long-lasting, non-fading coloration effect. The reported technique could be used in anti-counterfeiting and security applications, as well as in plasmonic color printing and macroscopic and microscopic marking for personalized fine arts and aesthetic products such as jewelry. |
doi_str_mv | 10.3390/coatings14101298 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120603680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814387437</galeid><sourcerecordid>A814387437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193t-d55ece8e68b551b78e27097b942f8b368ccdb64d7448e79e95bdfc275f7804fc3</originalsourceid><addsrcrecordid>eNpdUU1P3DAQjVArFQH3Hi31HGrHTmwfV9tSkBaBgJ4jxxmDkWOn_jjwV_i1eFkOqDOHGY3evHmj1zTfCT6nVOKfOqhs_WMijGDSSXHUHHeYy3ZgpPvyqf_WnKX0jGtIQgWRx83rTiWIaBt8jsGhYND9Cro4FZHyM_pljSkJ0B0YBzorr2GPeXiyHm1cWawvC7qwbmmvUnAqh9heQ1YO3edYdC4REjIhoo3Ptt2G4jNEA3Yv9p3_1qm0BG91VeD2uHV1Vtdngk-nzVejXIKzj3rS_L34_bC9bHc3f662m12riaS5nfseNAgYxNT3ZOICOo4lnyTrjJjoILSep4HNnDEBXILsp9nojveGC8yMpifNjwPvGsO_AimPz6FEX0-OlHR4wJUDV9T5AfWoHIzWm5Cj0jVnWKwOHoyt840gjArOKK8L-LCgY0gpghnXaBcVX0aCx71r4_-u0Teo0Y7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120603680</pqid></control><display><type>article</type><title>Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Nowak, Michał P. ; Stępak, Bogusz ; Pielach, Mateusz ; Stepanenko, Yuriy ; Wojciechowski, Tomasz ; Bartosewicz, Bartosz ; Chodorow, Urszula ; Jakubaszek, Marcin ; Wachulak, Przemysław ; Nyga, Piotr</creator><creatorcontrib>Nowak, Michał P. ; Stępak, Bogusz ; Pielach, Mateusz ; Stepanenko, Yuriy ; Wojciechowski, Tomasz ; Bartosewicz, Bartosz ; Chodorow, Urszula ; Jakubaszek, Marcin ; Wachulak, Przemysław ; Nyga, Piotr</creatorcontrib><description>Plasmonic structural color originates from the scattering and absorption of visible light by metallic nanostructures. Stacks consisting of thin, disordered semicontinuous metal films are attractive plasmonic color media, as they can be mass-produced using industry-proven physical vapor deposition techniques. These films are comprised of random nano-island structures of various sizes and shapes resonating at different wavelengths. When irradiated with short-pulse lasers, the nanostructures are locally restructured, and their optical response is altered in a spectrally selective manner. Therefore, various colors are obtained. We demonstrate the generation of structural plasmonic colors through femtosecond laser modification of a thin aluminum film–isolator–metal mirror (TAFIM) structure. Laser-induced structuring of TAFIM’s top aluminum film significantly alters the sample’s specular and diffuse reflectance depending on the fluence value and the number of times a region is scanned. A “negative image” effect is possible, where a dark field observation mode image is a negative of a bright field mode image. This effect is visible using an optical microscope, the naked eye, and a digital camera. The use of self-passivating aluminum results in a long-lasting, non-fading coloration effect. The reported technique could be used in anti-counterfeiting and security applications, as well as in plasmonic color printing and macroscopic and microscopic marking for personalized fine arts and aesthetic products such as jewelry.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings14101298</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Color ; Counterfeiting ; Dielectric films ; Digital cameras ; Digital imaging ; Electronic cameras ; Femtosecond pulsed lasers ; Femtosecond pulses ; Fluence ; Glass substrates ; Gold ; Isolators ; Lasers ; Light ; Metal films ; Metal mirrors ; Metallic films ; Nanoparticles ; Nanostructure ; Optical microscopes ; Physical vapor deposition ; Plasmonics ; Reflectance ; Short pulses ; Silver ; Thin film coatings ; Thin films ; Titanium</subject><ispartof>Coatings (Basel), 2024-10, Vol.14 (10), p.1298</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c193t-d55ece8e68b551b78e27097b942f8b368ccdb64d7448e79e95bdfc275f7804fc3</cites><orcidid>0000-0002-3414-7479 ; 0000-0002-9251-9314 ; 0000-0002-6424-988X ; 0000-0001-9157-6627 ; 0000-0001-9853-7946 ; 0000-0001-8875-4605 ; 0000-0002-8053-6563 ; 0000-0002-6849-1980 ; 0000-0002-7591-7142 ; 0000-0001-9919-4447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Stępak, Bogusz</creatorcontrib><creatorcontrib>Pielach, Mateusz</creatorcontrib><creatorcontrib>Stepanenko, Yuriy</creatorcontrib><creatorcontrib>Wojciechowski, Tomasz</creatorcontrib><creatorcontrib>Bartosewicz, Bartosz</creatorcontrib><creatorcontrib>Chodorow, Urszula</creatorcontrib><creatorcontrib>Jakubaszek, Marcin</creatorcontrib><creatorcontrib>Wachulak, Przemysław</creatorcontrib><creatorcontrib>Nyga, Piotr</creatorcontrib><title>Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications</title><title>Coatings (Basel)</title><description>Plasmonic structural color originates from the scattering and absorption of visible light by metallic nanostructures. Stacks consisting of thin, disordered semicontinuous metal films are attractive plasmonic color media, as they can be mass-produced using industry-proven physical vapor deposition techniques. These films are comprised of random nano-island structures of various sizes and shapes resonating at different wavelengths. When irradiated with short-pulse lasers, the nanostructures are locally restructured, and their optical response is altered in a spectrally selective manner. Therefore, various colors are obtained. We demonstrate the generation of structural plasmonic colors through femtosecond laser modification of a thin aluminum film–isolator–metal mirror (TAFIM) structure. Laser-induced structuring of TAFIM’s top aluminum film significantly alters the sample’s specular and diffuse reflectance depending on the fluence value and the number of times a region is scanned. A “negative image” effect is possible, where a dark field observation mode image is a negative of a bright field mode image. This effect is visible using an optical microscope, the naked eye, and a digital camera. The use of self-passivating aluminum results in a long-lasting, non-fading coloration effect. The reported technique could be used in anti-counterfeiting and security applications, as well as in plasmonic color printing and macroscopic and microscopic marking for personalized fine arts and aesthetic products such as jewelry.</description><subject>Aluminum</subject><subject>Color</subject><subject>Counterfeiting</subject><subject>Dielectric films</subject><subject>Digital cameras</subject><subject>Digital imaging</subject><subject>Electronic cameras</subject><subject>Femtosecond pulsed lasers</subject><subject>Femtosecond pulses</subject><subject>Fluence</subject><subject>Glass substrates</subject><subject>Gold</subject><subject>Isolators</subject><subject>Lasers</subject><subject>Light</subject><subject>Metal films</subject><subject>Metal mirrors</subject><subject>Metallic films</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Optical microscopes</subject><subject>Physical vapor deposition</subject><subject>Plasmonics</subject><subject>Reflectance</subject><subject>Short pulses</subject><subject>Silver</subject><subject>Thin film coatings</subject><subject>Thin films</subject><subject>Titanium</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUU1P3DAQjVArFQH3Hi31HGrHTmwfV9tSkBaBgJ4jxxmDkWOn_jjwV_i1eFkOqDOHGY3evHmj1zTfCT6nVOKfOqhs_WMijGDSSXHUHHeYy3ZgpPvyqf_WnKX0jGtIQgWRx83rTiWIaBt8jsGhYND9Cro4FZHyM_pljSkJ0B0YBzorr2GPeXiyHm1cWawvC7qwbmmvUnAqh9heQ1YO3edYdC4REjIhoo3Ptt2G4jNEA3Yv9p3_1qm0BG91VeD2uHV1Vtdngk-nzVejXIKzj3rS_L34_bC9bHc3f662m12riaS5nfseNAgYxNT3ZOICOo4lnyTrjJjoILSep4HNnDEBXILsp9nojveGC8yMpifNjwPvGsO_AimPz6FEX0-OlHR4wJUDV9T5AfWoHIzWm5Cj0jVnWKwOHoyt840gjArOKK8L-LCgY0gpghnXaBcVX0aCx71r4_-u0Teo0Y7s</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Nowak, Michał P.</creator><creator>Stępak, Bogusz</creator><creator>Pielach, Mateusz</creator><creator>Stepanenko, Yuriy</creator><creator>Wojciechowski, Tomasz</creator><creator>Bartosewicz, Bartosz</creator><creator>Chodorow, Urszula</creator><creator>Jakubaszek, Marcin</creator><creator>Wachulak, Przemysław</creator><creator>Nyga, Piotr</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3414-7479</orcidid><orcidid>https://orcid.org/0000-0002-9251-9314</orcidid><orcidid>https://orcid.org/0000-0002-6424-988X</orcidid><orcidid>https://orcid.org/0000-0001-9157-6627</orcidid><orcidid>https://orcid.org/0000-0001-9853-7946</orcidid><orcidid>https://orcid.org/0000-0001-8875-4605</orcidid><orcidid>https://orcid.org/0000-0002-8053-6563</orcidid><orcidid>https://orcid.org/0000-0002-6849-1980</orcidid><orcidid>https://orcid.org/0000-0002-7591-7142</orcidid><orcidid>https://orcid.org/0000-0001-9919-4447</orcidid></search><sort><creationdate>20241001</creationdate><title>Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications</title><author>Nowak, Michał P. ; Stępak, Bogusz ; Pielach, Mateusz ; Stepanenko, Yuriy ; Wojciechowski, Tomasz ; Bartosewicz, Bartosz ; Chodorow, Urszula ; Jakubaszek, Marcin ; Wachulak, Przemysław ; Nyga, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193t-d55ece8e68b551b78e27097b942f8b368ccdb64d7448e79e95bdfc275f7804fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Color</topic><topic>Counterfeiting</topic><topic>Dielectric films</topic><topic>Digital cameras</topic><topic>Digital imaging</topic><topic>Electronic cameras</topic><topic>Femtosecond pulsed lasers</topic><topic>Femtosecond pulses</topic><topic>Fluence</topic><topic>Glass substrates</topic><topic>Gold</topic><topic>Isolators</topic><topic>Lasers</topic><topic>Light</topic><topic>Metal films</topic><topic>Metal mirrors</topic><topic>Metallic films</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Optical microscopes</topic><topic>Physical vapor deposition</topic><topic>Plasmonics</topic><topic>Reflectance</topic><topic>Short pulses</topic><topic>Silver</topic><topic>Thin film coatings</topic><topic>Thin films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Stępak, Bogusz</creatorcontrib><creatorcontrib>Pielach, Mateusz</creatorcontrib><creatorcontrib>Stepanenko, Yuriy</creatorcontrib><creatorcontrib>Wojciechowski, Tomasz</creatorcontrib><creatorcontrib>Bartosewicz, Bartosz</creatorcontrib><creatorcontrib>Chodorow, Urszula</creatorcontrib><creatorcontrib>Jakubaszek, Marcin</creatorcontrib><creatorcontrib>Wachulak, Przemysław</creatorcontrib><creatorcontrib>Nyga, Piotr</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowak, Michał P.</au><au>Stępak, Bogusz</au><au>Pielach, Mateusz</au><au>Stepanenko, Yuriy</au><au>Wojciechowski, Tomasz</au><au>Bartosewicz, Bartosz</au><au>Chodorow, Urszula</au><au>Jakubaszek, Marcin</au><au>Wachulak, Przemysław</au><au>Nyga, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications</atitle><jtitle>Coatings (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>1298</spage><pages>1298-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Plasmonic structural color originates from the scattering and absorption of visible light by metallic nanostructures. Stacks consisting of thin, disordered semicontinuous metal films are attractive plasmonic color media, as they can be mass-produced using industry-proven physical vapor deposition techniques. These films are comprised of random nano-island structures of various sizes and shapes resonating at different wavelengths. When irradiated with short-pulse lasers, the nanostructures are locally restructured, and their optical response is altered in a spectrally selective manner. Therefore, various colors are obtained. We demonstrate the generation of structural plasmonic colors through femtosecond laser modification of a thin aluminum film–isolator–metal mirror (TAFIM) structure. Laser-induced structuring of TAFIM’s top aluminum film significantly alters the sample’s specular and diffuse reflectance depending on the fluence value and the number of times a region is scanned. A “negative image” effect is possible, where a dark field observation mode image is a negative of a bright field mode image. This effect is visible using an optical microscope, the naked eye, and a digital camera. The use of self-passivating aluminum results in a long-lasting, non-fading coloration effect. The reported technique could be used in anti-counterfeiting and security applications, as well as in plasmonic color printing and macroscopic and microscopic marking for personalized fine arts and aesthetic products such as jewelry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings14101298</doi><orcidid>https://orcid.org/0000-0002-3414-7479</orcidid><orcidid>https://orcid.org/0000-0002-9251-9314</orcidid><orcidid>https://orcid.org/0000-0002-6424-988X</orcidid><orcidid>https://orcid.org/0000-0001-9157-6627</orcidid><orcidid>https://orcid.org/0000-0001-9853-7946</orcidid><orcidid>https://orcid.org/0000-0001-8875-4605</orcidid><orcidid>https://orcid.org/0000-0002-8053-6563</orcidid><orcidid>https://orcid.org/0000-0002-6849-1980</orcidid><orcidid>https://orcid.org/0000-0002-7591-7142</orcidid><orcidid>https://orcid.org/0000-0001-9919-4447</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2024-10, Vol.14 (10), p.1298 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_3120603680 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection |
subjects | Aluminum Color Counterfeiting Dielectric films Digital cameras Digital imaging Electronic cameras Femtosecond pulsed lasers Femtosecond pulses Fluence Glass substrates Gold Isolators Lasers Light Metal films Metal mirrors Metallic films Nanoparticles Nanostructure Optical microscopes Physical vapor deposition Plasmonics Reflectance Short pulses Silver Thin film coatings Thin films Titanium |
title | Laser Control of Specular and Diffuse Reflectance of Thin Aluminum Film-Isolator-Metal Structures for Anti-Counterfeiting and Plasmonic Color Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Control%20of%20Specular%20and%20Diffuse%20Reflectance%20of%20Thin%20Aluminum%20Film-Isolator-Metal%20Structures%20for%20Anti-Counterfeiting%20and%20Plasmonic%20Color%20Applications&rft.jtitle=Coatings%20(Basel)&rft.au=Nowak,%20Micha%C5%82%20P.&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=1298&rft.pages=1298-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings14101298&rft_dat=%3Cgale_proqu%3EA814387437%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120603680&rft_id=info:pmid/&rft_galeid=A814387437&rfr_iscdi=true |