Some questions about complex harmonic functions

In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2024, Vol.205 (4), p.681-697
Hauptverfasser: Benítez-Babilonia, Luis E., Felipe, Raúl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 4
container_start_page 681
container_title Monatshefte für Mathematik
container_volume 205
creator Benítez-Babilonia, Luis E.
Felipe, Raúl
description In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of future research. In parallel, we define and study composition operators on a Hardy type space denoted by H H 2 ( D ) of complex harmonic functions also introduced for us in the present work. The symbols of these composition operators have of form χ + π ¯ where χ , π are analytic functions from D into D . We also analyze the space of bounded linear operators on H H 2 ( D ) .
doi_str_mv 10.1007/s00605-024-01956-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120553742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120553742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a13eb4f0532622a685fc21dbb973b58202c7b6cc1fe2617128493a9bbb46a8bd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEf_gKuC6zjvvTRpu5TBLxhwoa5Dkkm1w7QZkynov7e2gjtXb3PuvY_D2CXCNQKUywSgQHKgggPWUnE4YhkWQnEJFR6zDIAUr0nKU3aW0hYAUKg6Y8vn0Pn8Y_Dp0IY-5caG4ZC70O13_jN_N7ELfevyZujdBJyzk8bskr_4vQv2enf7snrg66f7x9XNmjsq4cANCm-LBqQgRWRUJRtHuLG2LoWVFQG50irnsPGksESqilqY2lpbKFPZjViwq7l3H8P0nd6GIfbjpBZIIKUoCxopmikXQ0rRN3of287EL42gf8ToWYwexehJjIYxJOZQGuH-zce_6n9S38nmZOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120553742</pqid></control><display><type>article</type><title>Some questions about complex harmonic functions</title><source>Springer Nature - Complete Springer Journals</source><creator>Benítez-Babilonia, Luis E. ; Felipe, Raúl</creator><creatorcontrib>Benítez-Babilonia, Luis E. ; Felipe, Raúl</creatorcontrib><description>In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of future research. In parallel, we define and study composition operators on a Hardy type space denoted by H H 2 ( D ) of complex harmonic functions also introduced for us in the present work. The symbols of these composition operators have of form χ + π ¯ where χ , π are analytic functions from D into D . We also analyze the space of bounded linear operators on H H 2 ( D ) .</description><identifier>ISSN: 0026-9255</identifier><identifier>EISSN: 1436-5081</identifier><identifier>DOI: 10.1007/s00605-024-01956-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytic functions ; Composition ; Harmonic functions ; Linear operators ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Monatshefte für Mathematik, 2024, Vol.205 (4), p.681-697</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a13eb4f0532622a685fc21dbb973b58202c7b6cc1fe2617128493a9bbb46a8bd3</cites><orcidid>0000-0002-2809-3232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00605-024-01956-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00605-024-01956-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Benítez-Babilonia, Luis E.</creatorcontrib><creatorcontrib>Felipe, Raúl</creatorcontrib><title>Some questions about complex harmonic functions</title><title>Monatshefte für Mathematik</title><addtitle>Monatsh Math</addtitle><description>In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of future research. In parallel, we define and study composition operators on a Hardy type space denoted by H H 2 ( D ) of complex harmonic functions also introduced for us in the present work. The symbols of these composition operators have of form χ + π ¯ where χ , π are analytic functions from D into D . We also analyze the space of bounded linear operators on H H 2 ( D ) .</description><subject>Analytic functions</subject><subject>Composition</subject><subject>Harmonic functions</subject><subject>Linear operators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>0026-9255</issn><issn>1436-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEf_gKuC6zjvvTRpu5TBLxhwoa5Dkkm1w7QZkynov7e2gjtXb3PuvY_D2CXCNQKUywSgQHKgggPWUnE4YhkWQnEJFR6zDIAUr0nKU3aW0hYAUKg6Y8vn0Pn8Y_Dp0IY-5caG4ZC70O13_jN_N7ELfevyZujdBJyzk8bskr_4vQv2enf7snrg66f7x9XNmjsq4cANCm-LBqQgRWRUJRtHuLG2LoWVFQG50irnsPGksESqilqY2lpbKFPZjViwq7l3H8P0nd6GIfbjpBZIIKUoCxopmikXQ0rRN3of287EL42gf8ToWYwexehJjIYxJOZQGuH-zce_6n9S38nmZOw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Benítez-Babilonia, Luis E.</creator><creator>Felipe, Raúl</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2809-3232</orcidid></search><sort><creationdate>2024</creationdate><title>Some questions about complex harmonic functions</title><author>Benítez-Babilonia, Luis E. ; Felipe, Raúl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a13eb4f0532622a685fc21dbb973b58202c7b6cc1fe2617128493a9bbb46a8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytic functions</topic><topic>Composition</topic><topic>Harmonic functions</topic><topic>Linear operators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benítez-Babilonia, Luis E.</creatorcontrib><creatorcontrib>Felipe, Raúl</creatorcontrib><collection>CrossRef</collection><jtitle>Monatshefte für Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benítez-Babilonia, Luis E.</au><au>Felipe, Raúl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some questions about complex harmonic functions</atitle><jtitle>Monatshefte für Mathematik</jtitle><stitle>Monatsh Math</stitle><date>2024</date><risdate>2024</risdate><volume>205</volume><issue>4</issue><spage>681</spage><epage>697</epage><pages>681-697</pages><issn>0026-9255</issn><eissn>1436-5081</eissn><abstract>In this paper, we propose composition products in the class of complex harmonic functions so that the composition of two such functions is again a complex harmonic function. From here, we begin the study of the iterations of the functions of this class showing briefly its potential to be a topic of future research. In parallel, we define and study composition operators on a Hardy type space denoted by H H 2 ( D ) of complex harmonic functions also introduced for us in the present work. The symbols of these composition operators have of form χ + π ¯ where χ , π are analytic functions from D into D . We also analyze the space of bounded linear operators on H H 2 ( D ) .</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00605-024-01956-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2809-3232</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-9255
ispartof Monatshefte für Mathematik, 2024, Vol.205 (4), p.681-697
issn 0026-9255
1436-5081
language eng
recordid cdi_proquest_journals_3120553742
source Springer Nature - Complete Springer Journals
subjects Analytic functions
Composition
Harmonic functions
Linear operators
Mathematics
Mathematics and Statistics
Operators (mathematics)
title Some questions about complex harmonic functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20questions%20about%20complex%20harmonic%20functions&rft.jtitle=Monatshefte%20f%C3%BCr%20Mathematik&rft.au=Ben%C3%ADtez-Babilonia,%20Luis%20E.&rft.date=2024&rft.volume=205&rft.issue=4&rft.spage=681&rft.epage=697&rft.pages=681-697&rft.issn=0026-9255&rft.eissn=1436-5081&rft_id=info:doi/10.1007/s00605-024-01956-0&rft_dat=%3Cproquest_cross%3E3120553742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120553742&rft_id=info:pmid/&rfr_iscdi=true