Nonlinear Anderson Localized States at Arbitrary Disorder

Given an Anderson model H = - Δ + V in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation i ∂ u ∂ t = - Δ u + V u + δ | u | 2 p u for small δ . Our approach combines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2024-11, Vol.405 (11), Article 272
Hauptverfasser: Liu, Wencai, Wang, W.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Communications in mathematical physics
container_volume 405
creator Liu, Wencai
Wang, W.-M.
description Given an Anderson model H = - Δ + V in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation i ∂ u ∂ t = - Δ u + V u + δ | u | 2 p u for small δ . Our approach combines probabilistic estimates from the Anderson model with the Craig–Wayne–Bourgain method for studying quasi-periodic solutions of nonlinear PDEs.
doi_str_mv 10.1007/s00220-024-05150-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120553258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120553258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-1a564006527a7b4ea89e8ca0bcb89f355152fe41f7acae8fe9dc33e4cb7c620f3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEmHhB6giURvGduwkZbQ8pQgKoLYcZ4yyCvFiZwv26zEEiY5qmnPvXB1CzhlcMoDyKgJwDhR4QUEyCXR_QDJWCE6hZuqQZAAMqFBMHZOTGDcAUHOlMlI_-mkcJjQhb6YeQ_RT3nprxmGPff48mxljbua8Cd0wBxM-8-sh-pDIU3LkzBjx7PeuyOvtzcv6nrZPdw_rpqWWA8yUGakKACV5acquQFPVWFkDne2q2gmZ1nKHBXOlsQYrh3VvhcDCdqVVHJxYkYuldxv8xw7jrDd-F6b0UgvGQUrBZZUovlA2-BgDOr0Nw3vaqxnob0V6UaSTIv2jSO9TSCyhmODpDcNf9T-pL86JaXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120553258</pqid></control><display><type>article</type><title>Nonlinear Anderson Localized States at Arbitrary Disorder</title><source>SpringerNature Journals</source><creator>Liu, Wencai ; Wang, W.-M.</creator><creatorcontrib>Liu, Wencai ; Wang, W.-M.</creatorcontrib><description>Given an Anderson model H = - Δ + V in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation i ∂ u ∂ t = - Δ u + V u + δ | u | 2 p u for small δ . Our approach combines probabilistic estimates from the Anderson model with the Craig–Wayne–Bourgain method for studying quasi-periodic solutions of nonlinear PDEs.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-024-05150-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Nonlinear differential equations ; Parabolic differential equations ; Partial differential equations ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Schrodinger equation ; Theoretical</subject><ispartof>Communications in mathematical physics, 2024-11, Vol.405 (11), Article 272</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-1a564006527a7b4ea89e8ca0bcb89f355152fe41f7acae8fe9dc33e4cb7c620f3</cites><orcidid>0000-0001-5154-6474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-024-05150-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-024-05150-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Liu, Wencai</creatorcontrib><creatorcontrib>Wang, W.-M.</creatorcontrib><title>Nonlinear Anderson Localized States at Arbitrary Disorder</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>Given an Anderson model H = - Δ + V in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation i ∂ u ∂ t = - Δ u + V u + δ | u | 2 p u for small δ . Our approach combines probabilistic estimates from the Anderson model with the Craig–Wayne–Bourgain method for studying quasi-periodic solutions of nonlinear PDEs.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Nonlinear differential equations</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Schrodinger equation</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEmHhB6giURvGduwkZbQ8pQgKoLYcZ4yyCvFiZwv26zEEiY5qmnPvXB1CzhlcMoDyKgJwDhR4QUEyCXR_QDJWCE6hZuqQZAAMqFBMHZOTGDcAUHOlMlI_-mkcJjQhb6YeQ_RT3nprxmGPff48mxljbua8Cd0wBxM-8-sh-pDIU3LkzBjx7PeuyOvtzcv6nrZPdw_rpqWWA8yUGakKACV5acquQFPVWFkDne2q2gmZ1nKHBXOlsQYrh3VvhcDCdqVVHJxYkYuldxv8xw7jrDd-F6b0UgvGQUrBZZUovlA2-BgDOr0Nw3vaqxnob0V6UaSTIv2jSO9TSCyhmODpDcNf9T-pL86JaXY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Liu, Wencai</creator><creator>Wang, W.-M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5154-6474</orcidid></search><sort><creationdate>20241101</creationdate><title>Nonlinear Anderson Localized States at Arbitrary Disorder</title><author>Liu, Wencai ; Wang, W.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-1a564006527a7b4ea89e8ca0bcb89f355152fe41f7acae8fe9dc33e4cb7c620f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Nonlinear differential equations</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Schrodinger equation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wencai</creatorcontrib><creatorcontrib>Wang, W.-M.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wencai</au><au>Wang, W.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Anderson Localized States at Arbitrary Disorder</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>405</volume><issue>11</issue><artnum>272</artnum><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>Given an Anderson model H = - Δ + V in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation i ∂ u ∂ t = - Δ u + V u + δ | u | 2 p u for small δ . Our approach combines probabilistic estimates from the Anderson model with the Craig–Wayne–Bourgain method for studying quasi-periodic solutions of nonlinear PDEs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-024-05150-z</doi><orcidid>https://orcid.org/0000-0001-5154-6474</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2024-11, Vol.405 (11), Article 272
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_3120553258
source SpringerNature Journals
subjects Classical and Quantum Gravitation
Complex Systems
Mathematical and Computational Physics
Mathematical Physics
Nonlinear differential equations
Parabolic differential equations
Partial differential equations
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Schrodinger equation
Theoretical
title Nonlinear Anderson Localized States at Arbitrary Disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Anderson%20Localized%20States%20at%20Arbitrary%20Disorder&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Liu,%20Wencai&rft.date=2024-11-01&rft.volume=405&rft.issue=11&rft.artnum=272&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-024-05150-z&rft_dat=%3Cproquest_cross%3E3120553258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120553258&rft_id=info:pmid/&rfr_iscdi=true