Advances in Liquid-Phase Synthesis: Monitoring of Kinetics for Platinum Nanoparticles Formation, and Pt/C Electrocatalysts with Monodispersive Nanoparticles for Oxygen Reduction
The growing demand for hydrogen–air fuel cells with a proton-exchange membrane has increased interest in the development of scalable technologies for the synthesis of Pt/C catalysts that will allow us to fine-tune the microstructure of such materials. We have developed a new in situ technique for co...
Gespeichert in:
Veröffentlicht in: | Catalysts 2024-10, Vol.14 (10), p.728 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growing demand for hydrogen–air fuel cells with a proton-exchange membrane has increased interest in the development of scalable technologies for the synthesis of Pt/C catalysts that will allow us to fine-tune the microstructure of such materials. We have developed a new in situ technique for controlling the kinetics of the transformation of a platinum precursor into its nanoparticles and deposited Pt/C catalysts, which might be applicable during the liquid-phase synthesis in concentrated solutions and carbon suspensions. The technique is based on the analysis of changes in the redox potential and the reaction medium coloring during the synthesis. The application of the developed technique under conditions of scaled production has made it possible to obtain Pt/C catalysts with 20% and 40% platinum loading, containing ultra-small metal nanoparticles with a narrow size distribution. The electrochemically active surface area of platinum and the mass activity of synthesized catalysts in the oxygen electroreduction reaction have proved to be significantly higher than those of commonly used commercial analogs. At the same time, despite the small size of nanoparticles, the catalysts’ degradation rate turned out to be the same as that of commercial analogs. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal14100728 |