Analyses of Reynolds and Mach number effects on Tollmien–Schlichting wave–bump interaction in subsonic flows
We investigated the effects of two-dimensional sharp-edged rectangular bumps on Tollmien–Schlichting (TS) wave evolution using direct numerical simulation. The bump height, $h$, ranged from 5 % to 40 % of the local displacement thickness, $\delta ^*$. Behind the bump, a recirculating flow region cou...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2024-10, Vol.998, Article A11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 998 |
creator | Himeno, Fernando H.T. Carvalho, A.E.B. Medeiros, M.A.F. |
description | We investigated the effects of two-dimensional sharp-edged rectangular bumps on Tollmien–Schlichting (TS) wave evolution using direct numerical simulation. The bump height, $h$, ranged from 5 % to 40 % of the local displacement thickness, $\delta ^*$. Behind the bump, a recirculating flow region could be formed whose length increased nonlinearly with $h$. The bump height effect on the TS wave, which was the dominant, scaled super-exponentially with $h$. We also showed a substantial effect of the $\delta ^*$-based Reynolds number, ${\textit {Re}} _{\delta ^*}$. Firstly, the bump wake extended with ${\textit {Re}} _{\delta ^*}$, promoting larger TS wave growth rates. The second effect is related to proximity to the upper branch of the instability loop, accounting for the influence of the TS frequency, as well. It dictates the bump impact increases as it gets closer to transition, either by the bump moving downstream or the transition moving upstream. For a 40 % high bump, for example, changing the ${\textit {Re}} _{\delta ^*}$ at the bump location from 1500 to 2000 increased $\Delta N$ by a factor of 2 ($\Delta N$ represents a measure of a surface irregularity effect on the smooth plate N-factor). We also found that $(\Delta N)_{max}$ increases linearly with ${\textit {Re}} _{hh}$. Results in the subsonic regime showed that the bump impact attenuates with Mach number up to 0.7 but above it, stabilisation is surpassed by the destabilising effect caused by the recirculation lengthening. This is mostly associated with the bump wake that extends with the pressure gradient which increases substantially towards the sonic speed. This is enhanced if the surface is adiabatic rather than isothermal. |
doi_str_mv | 10.1017/jfm.2024.675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120291557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_675</cupid><sourcerecordid>3120291557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-34883a0b08b2ab2eff5f573a8d8cde677eb1f67a5d5f48ca9c77b6e9486ea8353</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoWKs7HyDg1hmTzCWZZSneoCJoXYckk7QpM5kxmbF05zv4hj6JKRXcuDpw-P6fcz4ALjFKMcL0ZmPalCCSpyUtjsAE52WV0DIvjsEEIUISjAk6BWchbBDCGaroBPQzJ5pd0AF2Br7oneuaOkDhavgk1Bq6sZXaQ22MVkNkHFx2TdNa7b4_v17VurFqPVi3glvxoeNKjm0PrRu0F2qwEbcOhlGGzlkFTdNtwzk4MaIJ-uJ3TsHb3e1y_pAsnu8f57NFogihQ5LljGUCScQkEZLEAwpT0Eywmqlal5RqiU1JRVEXJmdKVIpSWeoqZ6UWLCuyKbg69Pa-ex91GPimG318NvAsaiAVLmLfFFwfKOW7ELw2vPe2FX7HMeJ7pzw65XunPDqNePqLi1Z6W6_0X-u_gR8C5X0h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120291557</pqid></control><display><type>article</type><title>Analyses of Reynolds and Mach number effects on Tollmien–Schlichting wave–bump interaction in subsonic flows</title><source>Cambridge University Press Journals Complete</source><creator>Himeno, Fernando H.T. ; Carvalho, A.E.B. ; Medeiros, M.A.F.</creator><creatorcontrib>Himeno, Fernando H.T. ; Carvalho, A.E.B. ; Medeiros, M.A.F.</creatorcontrib><description>We investigated the effects of two-dimensional sharp-edged rectangular bumps on Tollmien–Schlichting (TS) wave evolution using direct numerical simulation. The bump height, $h$, ranged from 5 % to 40 % of the local displacement thickness, $\delta ^*$. Behind the bump, a recirculating flow region could be formed whose length increased nonlinearly with $h$. The bump height effect on the TS wave, which was the dominant, scaled super-exponentially with $h$. We also showed a substantial effect of the $\delta ^*$-based Reynolds number, ${\textit {Re}} _{\delta ^*}$. Firstly, the bump wake extended with ${\textit {Re}} _{\delta ^*}$, promoting larger TS wave growth rates. The second effect is related to proximity to the upper branch of the instability loop, accounting for the influence of the TS frequency, as well. It dictates the bump impact increases as it gets closer to transition, either by the bump moving downstream or the transition moving upstream. For a 40 % high bump, for example, changing the ${\textit {Re}} _{\delta ^*}$ at the bump location from 1500 to 2000 increased $\Delta N$ by a factor of 2 ($\Delta N$ represents a measure of a surface irregularity effect on the smooth plate N-factor). We also found that $(\Delta N)_{max}$ increases linearly with ${\textit {Re}} _{hh}$. Results in the subsonic regime showed that the bump impact attenuates with Mach number up to 0.7 but above it, stabilisation is surpassed by the destabilising effect caused by the recirculation lengthening. This is mostly associated with the bump wake that extends with the pressure gradient which increases substantially towards the sonic speed. This is enhanced if the surface is adiabatic rather than isothermal.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.675</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adiabatic ; Direct numerical simulation ; Fluid flow ; Frequency stability ; Growth rate ; Height ; Investigations ; JFM Papers ; Mach number ; Mathematical models ; Pressure effects ; Pressure gradients ; Reynolds number ; Subsonic flow ; Two dimensional analysis ; Two dimensional flow</subject><ispartof>Journal of fluid mechanics, 2024-10, Vol.998, Article A11</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-34883a0b08b2ab2eff5f573a8d8cde677eb1f67a5d5f48ca9c77b6e9486ea8353</cites><orcidid>0009-0000-1433-9409 ; 0000-0003-4174-6258 ; 0000-0002-2345-5628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202400675X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Himeno, Fernando H.T.</creatorcontrib><creatorcontrib>Carvalho, A.E.B.</creatorcontrib><creatorcontrib>Medeiros, M.A.F.</creatorcontrib><title>Analyses of Reynolds and Mach number effects on Tollmien–Schlichting wave–bump interaction in subsonic flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigated the effects of two-dimensional sharp-edged rectangular bumps on Tollmien–Schlichting (TS) wave evolution using direct numerical simulation. The bump height, $h$, ranged from 5 % to 40 % of the local displacement thickness, $\delta ^*$. Behind the bump, a recirculating flow region could be formed whose length increased nonlinearly with $h$. The bump height effect on the TS wave, which was the dominant, scaled super-exponentially with $h$. We also showed a substantial effect of the $\delta ^*$-based Reynolds number, ${\textit {Re}} _{\delta ^*}$. Firstly, the bump wake extended with ${\textit {Re}} _{\delta ^*}$, promoting larger TS wave growth rates. The second effect is related to proximity to the upper branch of the instability loop, accounting for the influence of the TS frequency, as well. It dictates the bump impact increases as it gets closer to transition, either by the bump moving downstream or the transition moving upstream. For a 40 % high bump, for example, changing the ${\textit {Re}} _{\delta ^*}$ at the bump location from 1500 to 2000 increased $\Delta N$ by a factor of 2 ($\Delta N$ represents a measure of a surface irregularity effect on the smooth plate N-factor). We also found that $(\Delta N)_{max}$ increases linearly with ${\textit {Re}} _{hh}$. Results in the subsonic regime showed that the bump impact attenuates with Mach number up to 0.7 but above it, stabilisation is surpassed by the destabilising effect caused by the recirculation lengthening. This is mostly associated with the bump wake that extends with the pressure gradient which increases substantially towards the sonic speed. This is enhanced if the surface is adiabatic rather than isothermal.</description><subject>Adiabatic</subject><subject>Direct numerical simulation</subject><subject>Fluid flow</subject><subject>Frequency stability</subject><subject>Growth rate</subject><subject>Height</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Mach number</subject><subject>Mathematical models</subject><subject>Pressure effects</subject><subject>Pressure gradients</subject><subject>Reynolds number</subject><subject>Subsonic flow</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEUhoMoWKs7HyDg1hmTzCWZZSneoCJoXYckk7QpM5kxmbF05zv4hj6JKRXcuDpw-P6fcz4ALjFKMcL0ZmPalCCSpyUtjsAE52WV0DIvjsEEIUISjAk6BWchbBDCGaroBPQzJ5pd0AF2Br7oneuaOkDhavgk1Bq6sZXaQ22MVkNkHFx2TdNa7b4_v17VurFqPVi3glvxoeNKjm0PrRu0F2qwEbcOhlGGzlkFTdNtwzk4MaIJ-uJ3TsHb3e1y_pAsnu8f57NFogihQ5LljGUCScQkEZLEAwpT0Eywmqlal5RqiU1JRVEXJmdKVIpSWeoqZ6UWLCuyKbg69Pa-ex91GPimG318NvAsaiAVLmLfFFwfKOW7ELw2vPe2FX7HMeJ7pzw65XunPDqNePqLi1Z6W6_0X-u_gR8C5X0h</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Himeno, Fernando H.T.</creator><creator>Carvalho, A.E.B.</creator><creator>Medeiros, M.A.F.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-1433-9409</orcidid><orcidid>https://orcid.org/0000-0003-4174-6258</orcidid><orcidid>https://orcid.org/0000-0002-2345-5628</orcidid></search><sort><creationdate>20241025</creationdate><title>Analyses of Reynolds and Mach number effects on Tollmien–Schlichting wave–bump interaction in subsonic flows</title><author>Himeno, Fernando H.T. ; Carvalho, A.E.B. ; Medeiros, M.A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-34883a0b08b2ab2eff5f573a8d8cde677eb1f67a5d5f48ca9c77b6e9486ea8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adiabatic</topic><topic>Direct numerical simulation</topic><topic>Fluid flow</topic><topic>Frequency stability</topic><topic>Growth rate</topic><topic>Height</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Mach number</topic><topic>Mathematical models</topic><topic>Pressure effects</topic><topic>Pressure gradients</topic><topic>Reynolds number</topic><topic>Subsonic flow</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Himeno, Fernando H.T.</creatorcontrib><creatorcontrib>Carvalho, A.E.B.</creatorcontrib><creatorcontrib>Medeiros, M.A.F.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Himeno, Fernando H.T.</au><au>Carvalho, A.E.B.</au><au>Medeiros, M.A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyses of Reynolds and Mach number effects on Tollmien–Schlichting wave–bump interaction in subsonic flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>998</volume><artnum>A11</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We investigated the effects of two-dimensional sharp-edged rectangular bumps on Tollmien–Schlichting (TS) wave evolution using direct numerical simulation. The bump height, $h$, ranged from 5 % to 40 % of the local displacement thickness, $\delta ^*$. Behind the bump, a recirculating flow region could be formed whose length increased nonlinearly with $h$. The bump height effect on the TS wave, which was the dominant, scaled super-exponentially with $h$. We also showed a substantial effect of the $\delta ^*$-based Reynolds number, ${\textit {Re}} _{\delta ^*}$. Firstly, the bump wake extended with ${\textit {Re}} _{\delta ^*}$, promoting larger TS wave growth rates. The second effect is related to proximity to the upper branch of the instability loop, accounting for the influence of the TS frequency, as well. It dictates the bump impact increases as it gets closer to transition, either by the bump moving downstream or the transition moving upstream. For a 40 % high bump, for example, changing the ${\textit {Re}} _{\delta ^*}$ at the bump location from 1500 to 2000 increased $\Delta N$ by a factor of 2 ($\Delta N$ represents a measure of a surface irregularity effect on the smooth plate N-factor). We also found that $(\Delta N)_{max}$ increases linearly with ${\textit {Re}} _{hh}$. Results in the subsonic regime showed that the bump impact attenuates with Mach number up to 0.7 but above it, stabilisation is surpassed by the destabilising effect caused by the recirculation lengthening. This is mostly associated with the bump wake that extends with the pressure gradient which increases substantially towards the sonic speed. This is enhanced if the surface is adiabatic rather than isothermal.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.675</doi><tpages>36</tpages><orcidid>https://orcid.org/0009-0000-1433-9409</orcidid><orcidid>https://orcid.org/0000-0003-4174-6258</orcidid><orcidid>https://orcid.org/0000-0002-2345-5628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2024-10, Vol.998, Article A11 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_3120291557 |
source | Cambridge University Press Journals Complete |
subjects | Adiabatic Direct numerical simulation Fluid flow Frequency stability Growth rate Height Investigations JFM Papers Mach number Mathematical models Pressure effects Pressure gradients Reynolds number Subsonic flow Two dimensional analysis Two dimensional flow |
title | Analyses of Reynolds and Mach number effects on Tollmien–Schlichting wave–bump interaction in subsonic flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyses%20of%20Reynolds%20and%20Mach%20number%20effects%20on%20Tollmien%E2%80%93Schlichting%20wave%E2%80%93bump%20interaction%20in%20subsonic%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Himeno,%20Fernando%20H.T.&rft.date=2024-10-25&rft.volume=998&rft.artnum=A11&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.675&rft_dat=%3Cproquest_cross%3E3120291557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120291557&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_675&rfr_iscdi=true |