Dynamic Mechanical Properties and Constitutive Model of Coal Rock Under Direct Tension

As one of the hotspots in rock mechanics research, coal rock’s dynamic tensile properties are crucial to the parameter selection of blasting engineering, mechanism studies of rock burst disasters, and stability control. The stress states of coal rock during indirect tension with Brazilian splitting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2024-11, Vol.57 (11), p.9231-9249
Hauptverfasser: Zhou, Hui, Ren, Huiqi, Xie, Quanmin, Zhang, Hongen, Fu, Qiang, Mu, Chaomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9249
container_issue 11
container_start_page 9231
container_title Rock mechanics and rock engineering
container_volume 57
creator Zhou, Hui
Ren, Huiqi
Xie, Quanmin
Zhang, Hongen
Fu, Qiang
Mu, Chaomin
description As one of the hotspots in rock mechanics research, coal rock’s dynamic tensile properties are crucial to the parameter selection of blasting engineering, mechanism studies of rock burst disasters, and stability control. The stress states of coal rock during indirect tension with Brazilian splitting and direct tension with split Hopkinson tensile bar (SHTB) were compared using numerical simulations, revealing the superiority of the direct-tension test. On this basis, systematic dynamic direct-tension tests of coal rock under the strain rates (124 to 247 s −1 ) were carried out utilizing the improved SHTB, and quasi-static tensile tests were performed for comparison. The results reveal that the connection mode of using high-strength adhesive paste specimens and gradient reinforcement with steel wire mesh is reliable for SHTB tests. However, the stress equilibrium is no longer satisfied if the strain rate exceeds 300 s −1 , and the layered fracture of the specimen will occur. With an increase in strain rate, the dynamic elastic modulus increases linearly, the dynamic tensile strength tends to increase as an exponential function, and the dynamic increase factor (DIF) tends to increase linearly in two stages. The DIF grows slowly once the strain rate is over 180 s −1 and the dynamic ultimate tensile strength of the coal rock lies around 8 MPa. Finally, based on the improved Zhu–Wang–Tang (ZWT) model and the introduction of dynamic damage factor, the unified damage constitutive equation that can describe the strain rate effect under dynamic tension of coal rock is constructed. Moreover, the rationality of the constitutive parameter value is verified. Highlights Superiority of direct tension test over Brazilian disk tensile test is revealed Functional relationship between tensile DIF and strain rate of coal rock isobtained Unified damage constitutive model of coal rock under dynamic tension isconstructed
doi_str_mv 10.1007/s00603-024-04071-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120258320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120258320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d09c3f86e84530d9ef750be657ee77c3fc08dd842eccd469cc8b5773d16353943</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKsv4FXA69XZZDfZvZT6Cy2KtOhd2CazmtomNdkKfRufxSczuoJ3Xg3M-c6Z4RBynMNpDiDPIoAAngErMihA5pnYIYO84EVWlPxplwxAMp4xwdk-OYhxAZBEWQ3I48XWNSur6QT1S-Osbpb0Pvg1hs5ipI0zdORd7Gy36ew70ok3uKS-TdtEPnj9SmfOYKAXNqDuPj-m6KL17pDstc0y4tHvHJLZ1eV0dJON765vR-fjTDOALjNQa95WAqv0J5gaW1nCHEUpEaVMkobKmKpgqLUpRK11NS-l5CYXvOR1wYfkpM9dB_-2wdiphd8El04qnjNgZcUZJIr1lA4-xoCtWge7asJW5aC-C1R9gSoVqH4KVCKZeG-KCXbPGP6i_3F9ASO8c8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120258320</pqid></control><display><type>article</type><title>Dynamic Mechanical Properties and Constitutive Model of Coal Rock Under Direct Tension</title><source>SpringerNature Journals</source><creator>Zhou, Hui ; Ren, Huiqi ; Xie, Quanmin ; Zhang, Hongen ; Fu, Qiang ; Mu, Chaomin</creator><creatorcontrib>Zhou, Hui ; Ren, Huiqi ; Xie, Quanmin ; Zhang, Hongen ; Fu, Qiang ; Mu, Chaomin</creatorcontrib><description>As one of the hotspots in rock mechanics research, coal rock’s dynamic tensile properties are crucial to the parameter selection of blasting engineering, mechanism studies of rock burst disasters, and stability control. The stress states of coal rock during indirect tension with Brazilian splitting and direct tension with split Hopkinson tensile bar (SHTB) were compared using numerical simulations, revealing the superiority of the direct-tension test. On this basis, systematic dynamic direct-tension tests of coal rock under the strain rates (124 to 247 s −1 ) were carried out utilizing the improved SHTB, and quasi-static tensile tests were performed for comparison. The results reveal that the connection mode of using high-strength adhesive paste specimens and gradient reinforcement with steel wire mesh is reliable for SHTB tests. However, the stress equilibrium is no longer satisfied if the strain rate exceeds 300 s −1 , and the layered fracture of the specimen will occur. With an increase in strain rate, the dynamic elastic modulus increases linearly, the dynamic tensile strength tends to increase as an exponential function, and the dynamic increase factor (DIF) tends to increase linearly in two stages. The DIF grows slowly once the strain rate is over 180 s −1 and the dynamic ultimate tensile strength of the coal rock lies around 8 MPa. Finally, based on the improved Zhu–Wang–Tang (ZWT) model and the introduction of dynamic damage factor, the unified damage constitutive equation that can describe the strain rate effect under dynamic tension of coal rock is constructed. Moreover, the rationality of the constitutive parameter value is verified. Highlights Superiority of direct tension test over Brazilian disk tensile test is revealed Functional relationship between tensile DIF and strain rate of coal rock isobtained Unified damage constitutive model of coal rock under dynamic tension isconstructed</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-024-04071-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Adhesive strength ; Blasting ; Civil Engineering ; Coal ; Constitutive equations ; Constitutive models ; Constitutive relationships ; Control stability ; Damage ; Disasters ; Dynamic mechanical properties ; Earth and Environmental Science ; Earth Sciences ; Exponential functions ; Geophysics/Geodesy ; Mechanical properties ; Modulus of elasticity ; Original Paper ; Parameters ; Rock ; Rock mechanics ; Rockbursts ; Rocks ; Steel wire ; Storage modulus ; Strain ; Strain rate ; Tensile properties ; Tensile strength ; Tensile tests ; Tension ; Tension tests ; Ultimate tensile strength ; Wire cloth ; Wire ropes</subject><ispartof>Rock mechanics and rock engineering, 2024-11, Vol.57 (11), p.9231-9249</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d09c3f86e84530d9ef750be657ee77c3fc08dd842eccd469cc8b5773d16353943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-024-04071-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-024-04071-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Ren, Huiqi</creatorcontrib><creatorcontrib>Xie, Quanmin</creatorcontrib><creatorcontrib>Zhang, Hongen</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><creatorcontrib>Mu, Chaomin</creatorcontrib><title>Dynamic Mechanical Properties and Constitutive Model of Coal Rock Under Direct Tension</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>As one of the hotspots in rock mechanics research, coal rock’s dynamic tensile properties are crucial to the parameter selection of blasting engineering, mechanism studies of rock burst disasters, and stability control. The stress states of coal rock during indirect tension with Brazilian splitting and direct tension with split Hopkinson tensile bar (SHTB) were compared using numerical simulations, revealing the superiority of the direct-tension test. On this basis, systematic dynamic direct-tension tests of coal rock under the strain rates (124 to 247 s −1 ) were carried out utilizing the improved SHTB, and quasi-static tensile tests were performed for comparison. The results reveal that the connection mode of using high-strength adhesive paste specimens and gradient reinforcement with steel wire mesh is reliable for SHTB tests. However, the stress equilibrium is no longer satisfied if the strain rate exceeds 300 s −1 , and the layered fracture of the specimen will occur. With an increase in strain rate, the dynamic elastic modulus increases linearly, the dynamic tensile strength tends to increase as an exponential function, and the dynamic increase factor (DIF) tends to increase linearly in two stages. The DIF grows slowly once the strain rate is over 180 s −1 and the dynamic ultimate tensile strength of the coal rock lies around 8 MPa. Finally, based on the improved Zhu–Wang–Tang (ZWT) model and the introduction of dynamic damage factor, the unified damage constitutive equation that can describe the strain rate effect under dynamic tension of coal rock is constructed. Moreover, the rationality of the constitutive parameter value is verified. Highlights Superiority of direct tension test over Brazilian disk tensile test is revealed Functional relationship between tensile DIF and strain rate of coal rock isobtained Unified damage constitutive model of coal rock under dynamic tension isconstructed</description><subject>Adhesive strength</subject><subject>Blasting</subject><subject>Civil Engineering</subject><subject>Coal</subject><subject>Constitutive equations</subject><subject>Constitutive models</subject><subject>Constitutive relationships</subject><subject>Control stability</subject><subject>Damage</subject><subject>Disasters</subject><subject>Dynamic mechanical properties</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Exponential functions</subject><subject>Geophysics/Geodesy</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Rock</subject><subject>Rock mechanics</subject><subject>Rockbursts</subject><subject>Rocks</subject><subject>Steel wire</subject><subject>Storage modulus</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Tension</subject><subject>Tension tests</subject><subject>Ultimate tensile strength</subject><subject>Wire cloth</subject><subject>Wire ropes</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWKsv4FXA69XZZDfZvZT6Cy2KtOhd2CazmtomNdkKfRufxSczuoJ3Xg3M-c6Z4RBynMNpDiDPIoAAngErMihA5pnYIYO84EVWlPxplwxAMp4xwdk-OYhxAZBEWQ3I48XWNSur6QT1S-Osbpb0Pvg1hs5ipI0zdORd7Gy36ew70ok3uKS-TdtEPnj9SmfOYKAXNqDuPj-m6KL17pDstc0y4tHvHJLZ1eV0dJON765vR-fjTDOALjNQa95WAqv0J5gaW1nCHEUpEaVMkobKmKpgqLUpRK11NS-l5CYXvOR1wYfkpM9dB_-2wdiphd8El04qnjNgZcUZJIr1lA4-xoCtWge7asJW5aC-C1R9gSoVqH4KVCKZeG-KCXbPGP6i_3F9ASO8c8c</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhou, Hui</creator><creator>Ren, Huiqi</creator><creator>Xie, Quanmin</creator><creator>Zhang, Hongen</creator><creator>Fu, Qiang</creator><creator>Mu, Chaomin</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20241101</creationdate><title>Dynamic Mechanical Properties and Constitutive Model of Coal Rock Under Direct Tension</title><author>Zhou, Hui ; Ren, Huiqi ; Xie, Quanmin ; Zhang, Hongen ; Fu, Qiang ; Mu, Chaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d09c3f86e84530d9ef750be657ee77c3fc08dd842eccd469cc8b5773d16353943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive strength</topic><topic>Blasting</topic><topic>Civil Engineering</topic><topic>Coal</topic><topic>Constitutive equations</topic><topic>Constitutive models</topic><topic>Constitutive relationships</topic><topic>Control stability</topic><topic>Damage</topic><topic>Disasters</topic><topic>Dynamic mechanical properties</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Exponential functions</topic><topic>Geophysics/Geodesy</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Rock</topic><topic>Rock mechanics</topic><topic>Rockbursts</topic><topic>Rocks</topic><topic>Steel wire</topic><topic>Storage modulus</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Tension</topic><topic>Tension tests</topic><topic>Ultimate tensile strength</topic><topic>Wire cloth</topic><topic>Wire ropes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Ren, Huiqi</creatorcontrib><creatorcontrib>Xie, Quanmin</creatorcontrib><creatorcontrib>Zhang, Hongen</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><creatorcontrib>Mu, Chaomin</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hui</au><au>Ren, Huiqi</au><au>Xie, Quanmin</au><au>Zhang, Hongen</au><au>Fu, Qiang</au><au>Mu, Chaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Mechanical Properties and Constitutive Model of Coal Rock Under Direct Tension</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>57</volume><issue>11</issue><spage>9231</spage><epage>9249</epage><pages>9231-9249</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>As one of the hotspots in rock mechanics research, coal rock’s dynamic tensile properties are crucial to the parameter selection of blasting engineering, mechanism studies of rock burst disasters, and stability control. The stress states of coal rock during indirect tension with Brazilian splitting and direct tension with split Hopkinson tensile bar (SHTB) were compared using numerical simulations, revealing the superiority of the direct-tension test. On this basis, systematic dynamic direct-tension tests of coal rock under the strain rates (124 to 247 s −1 ) were carried out utilizing the improved SHTB, and quasi-static tensile tests were performed for comparison. The results reveal that the connection mode of using high-strength adhesive paste specimens and gradient reinforcement with steel wire mesh is reliable for SHTB tests. However, the stress equilibrium is no longer satisfied if the strain rate exceeds 300 s −1 , and the layered fracture of the specimen will occur. With an increase in strain rate, the dynamic elastic modulus increases linearly, the dynamic tensile strength tends to increase as an exponential function, and the dynamic increase factor (DIF) tends to increase linearly in two stages. The DIF grows slowly once the strain rate is over 180 s −1 and the dynamic ultimate tensile strength of the coal rock lies around 8 MPa. Finally, based on the improved Zhu–Wang–Tang (ZWT) model and the introduction of dynamic damage factor, the unified damage constitutive equation that can describe the strain rate effect under dynamic tension of coal rock is constructed. Moreover, the rationality of the constitutive parameter value is verified. Highlights Superiority of direct tension test over Brazilian disk tensile test is revealed Functional relationship between tensile DIF and strain rate of coal rock isobtained Unified damage constitutive model of coal rock under dynamic tension isconstructed</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-024-04071-6</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2024-11, Vol.57 (11), p.9231-9249
issn 0723-2632
1434-453X
language eng
recordid cdi_proquest_journals_3120258320
source SpringerNature Journals
subjects Adhesive strength
Blasting
Civil Engineering
Coal
Constitutive equations
Constitutive models
Constitutive relationships
Control stability
Damage
Disasters
Dynamic mechanical properties
Earth and Environmental Science
Earth Sciences
Exponential functions
Geophysics/Geodesy
Mechanical properties
Modulus of elasticity
Original Paper
Parameters
Rock
Rock mechanics
Rockbursts
Rocks
Steel wire
Storage modulus
Strain
Strain rate
Tensile properties
Tensile strength
Tensile tests
Tension
Tension tests
Ultimate tensile strength
Wire cloth
Wire ropes
title Dynamic Mechanical Properties and Constitutive Model of Coal Rock Under Direct Tension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Mechanical%20Properties%20and%20Constitutive%20Model%20of%20Coal%20Rock%20Under%20Direct%C2%A0Tension&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Zhou,%20Hui&rft.date=2024-11-01&rft.volume=57&rft.issue=11&rft.spage=9231&rft.epage=9249&rft.pages=9231-9249&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-024-04071-6&rft_dat=%3Cproquest_cross%3E3120258320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120258320&rft_id=info:pmid/&rfr_iscdi=true