Self‐Doped Mixed Ionic‐Electronic Conductors to Tune the Threshold Voltage and the Mode of Operation in Organic Electrochemical Transistors

Organic mixed ionic‐electronic conductors with tunable doping, low threshold voltages, and air stability are crucial for bioelectronic applications. A homopolymer based on an alkoxy thiophene monomer and its copolymer with a thiophene carrying ethylene glycol side chains are synthesized and converte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (44), p.n/a
Hauptverfasser: Hungenberg, Julian, Hochgesang, Adrian, Meichsner, Florian, Thelakkat, Mukundan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page
container_title Advanced functional materials
container_volume 34
creator Hungenberg, Julian
Hochgesang, Adrian
Meichsner, Florian
Thelakkat, Mukundan
description Organic mixed ionic‐electronic conductors with tunable doping, low threshold voltages, and air stability are crucial for bioelectronic applications. A homopolymer based on an alkoxy thiophene monomer and its copolymer with a thiophene carrying ethylene glycol side chains are synthesized and converted to self‐doped conjugated polyelectrolytes, P3HOTS‐TMA+, and P3HOTS‐TMA+‐co‐P3MEEET. The self‐doping occurs during the conversion to polyelectrolytes. Both polyelectrolytes show high electrical conductivity without any external dopants. UV–Vis–NIR spectroscopy and spectroelectrochemistry confirm excellent air stability of the doped state. In an organic electrochemical transistor (OECT), the P3HOTS‐TMA+ operates in depletion mode, while P3HOTS‐TMA+‐co‐P3MEEET exhibits accumulation mode of operation with low threshold voltage, both showing fast response times. On the other hand, the non‐doped homopolymer, P3MEEET, shows a high negative threshold voltage in accumulation mode. Thus, copolymerization with the self‐dopable monomer changes the mode of operation as well as the threshold voltage substantially. Ultraviolet photoelectron spectroscopy reveals a considerable reduction of the hole injection barrier for the self‐doped system P3HOTS‐TMA+. Mott‐Schottky analysis shows reduction in charge carrier concentration in the copolymer compared to the homopolymer. Thus, the copolymerization strategy with a self‐dopable monomer is an efficient tool for tuning the degree of doping leading to low threshold voltage in OECTs. Self‐doped, air‐stable organic mixed ionic‐electronic conductors showing high electrical conductivity are synthesized. A copolymerization with a not self‐dopable comonomer is demonstrated to tune the degree of doping and the mode of operation in electrochemical transistors. This copolymer operates in the accumulation mode with a low threshold voltage, which make these materials highly interesting for applications in neuromorphic computing and bioelectronics.
doi_str_mv 10.1002/adfm.202407067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120215595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120215595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2427-f38229275738ef79bfe1ca675ddb12de78b1306d875c978099c466d8a8cc0763</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIlMKVsyXOKbbzcHKs-oBKrXogQtws1940rtI42KmgN_4AvpEvIaFVOXLZ3dmdmZXG824JHhCM6b1Q-XZAMQ0xwzE783okJrEfYJqcn2byculdObfBmDAWhD3v8wnK_Pvja2xqUGih39s6M5WW7W5SgmxsB9DIVGonG2MdagzKdhWgpgCUFRZcYUqFnk3ZiDUgUanfy8IoQCZHyxqsaLSpkK7Q0q5F53Y0lgVstRQlyqyonHad_bV3kYvSwc2x971sOslGj_58-TAbDee-pCFlfh4klKaURSxIIGfpKgciRcwipVaEKmDJigQ4VgmLZMoSnKYyjFsoEikxi4O-d3ewra153YFr-MbsbNV-5AFpMyRRlEYta3BgSWucs5Dz2uqtsHtOMO8y513m_JR5K0gPgjddwv4fNh-Op4s_7Q8feYka</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120215595</pqid></control><display><type>article</type><title>Self‐Doped Mixed Ionic‐Electronic Conductors to Tune the Threshold Voltage and the Mode of Operation in Organic Electrochemical Transistors</title><source>Access via Wiley Online Library</source><creator>Hungenberg, Julian ; Hochgesang, Adrian ; Meichsner, Florian ; Thelakkat, Mukundan</creator><creatorcontrib>Hungenberg, Julian ; Hochgesang, Adrian ; Meichsner, Florian ; Thelakkat, Mukundan</creatorcontrib><description>Organic mixed ionic‐electronic conductors with tunable doping, low threshold voltages, and air stability are crucial for bioelectronic applications. A homopolymer based on an alkoxy thiophene monomer and its copolymer with a thiophene carrying ethylene glycol side chains are synthesized and converted to self‐doped conjugated polyelectrolytes, P3HOTS‐TMA+, and P3HOTS‐TMA+‐co‐P3MEEET. The self‐doping occurs during the conversion to polyelectrolytes. Both polyelectrolytes show high electrical conductivity without any external dopants. UV–Vis–NIR spectroscopy and spectroelectrochemistry confirm excellent air stability of the doped state. In an organic electrochemical transistor (OECT), the P3HOTS‐TMA+ operates in depletion mode, while P3HOTS‐TMA+‐co‐P3MEEET exhibits accumulation mode of operation with low threshold voltage, both showing fast response times. On the other hand, the non‐doped homopolymer, P3MEEET, shows a high negative threshold voltage in accumulation mode. Thus, copolymerization with the self‐dopable monomer changes the mode of operation as well as the threshold voltage substantially. Ultraviolet photoelectron spectroscopy reveals a considerable reduction of the hole injection barrier for the self‐doped system P3HOTS‐TMA+. Mott‐Schottky analysis shows reduction in charge carrier concentration in the copolymer compared to the homopolymer. Thus, the copolymerization strategy with a self‐dopable monomer is an efficient tool for tuning the degree of doping leading to low threshold voltage in OECTs. Self‐doped, air‐stable organic mixed ionic‐electronic conductors showing high electrical conductivity are synthesized. A copolymerization with a not self‐dopable comonomer is demonstrated to tune the degree of doping and the mode of operation in electrochemical transistors. This copolymer operates in the accumulation mode with a low threshold voltage, which make these materials highly interesting for applications in neuromorphic computing and bioelectronics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202407067</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Bioelectricity ; bioelectronics ; Carrier density ; Conductors ; conjugated polyelectrolytes ; copolymer ; Copolymerization ; Copolymers ; Current carriers ; Doping ; Electrical resistivity ; Ethylene glycol ; Monomers ; Photoelectrons ; Polyelectrolytes ; polythiophene ; self‐compensation ; Spectrum analysis ; Stability ; Threshold voltage ; Transistors</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (44), p.n/a</ispartof><rights>2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2427-f38229275738ef79bfe1ca675ddb12de78b1306d875c978099c466d8a8cc0763</cites><orcidid>0000-0001-8675-1398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202407067$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202407067$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hungenberg, Julian</creatorcontrib><creatorcontrib>Hochgesang, Adrian</creatorcontrib><creatorcontrib>Meichsner, Florian</creatorcontrib><creatorcontrib>Thelakkat, Mukundan</creatorcontrib><title>Self‐Doped Mixed Ionic‐Electronic Conductors to Tune the Threshold Voltage and the Mode of Operation in Organic Electrochemical Transistors</title><title>Advanced functional materials</title><description>Organic mixed ionic‐electronic conductors with tunable doping, low threshold voltages, and air stability are crucial for bioelectronic applications. A homopolymer based on an alkoxy thiophene monomer and its copolymer with a thiophene carrying ethylene glycol side chains are synthesized and converted to self‐doped conjugated polyelectrolytes, P3HOTS‐TMA+, and P3HOTS‐TMA+‐co‐P3MEEET. The self‐doping occurs during the conversion to polyelectrolytes. Both polyelectrolytes show high electrical conductivity without any external dopants. UV–Vis–NIR spectroscopy and spectroelectrochemistry confirm excellent air stability of the doped state. In an organic electrochemical transistor (OECT), the P3HOTS‐TMA+ operates in depletion mode, while P3HOTS‐TMA+‐co‐P3MEEET exhibits accumulation mode of operation with low threshold voltage, both showing fast response times. On the other hand, the non‐doped homopolymer, P3MEEET, shows a high negative threshold voltage in accumulation mode. Thus, copolymerization with the self‐dopable monomer changes the mode of operation as well as the threshold voltage substantially. Ultraviolet photoelectron spectroscopy reveals a considerable reduction of the hole injection barrier for the self‐doped system P3HOTS‐TMA+. Mott‐Schottky analysis shows reduction in charge carrier concentration in the copolymer compared to the homopolymer. Thus, the copolymerization strategy with a self‐dopable monomer is an efficient tool for tuning the degree of doping leading to low threshold voltage in OECTs. Self‐doped, air‐stable organic mixed ionic‐electronic conductors showing high electrical conductivity are synthesized. A copolymerization with a not self‐dopable comonomer is demonstrated to tune the degree of doping and the mode of operation in electrochemical transistors. This copolymer operates in the accumulation mode with a low threshold voltage, which make these materials highly interesting for applications in neuromorphic computing and bioelectronics.</description><subject>Accumulation</subject><subject>Bioelectricity</subject><subject>bioelectronics</subject><subject>Carrier density</subject><subject>Conductors</subject><subject>conjugated polyelectrolytes</subject><subject>copolymer</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>Current carriers</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Ethylene glycol</subject><subject>Monomers</subject><subject>Photoelectrons</subject><subject>Polyelectrolytes</subject><subject>polythiophene</subject><subject>self‐compensation</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUMtOwzAQjBBIlMKVsyXOKbbzcHKs-oBKrXogQtws1940rtI42KmgN_4AvpEvIaFVOXLZ3dmdmZXG824JHhCM6b1Q-XZAMQ0xwzE783okJrEfYJqcn2byculdObfBmDAWhD3v8wnK_Pvja2xqUGih39s6M5WW7W5SgmxsB9DIVGonG2MdagzKdhWgpgCUFRZcYUqFnk3ZiDUgUanfy8IoQCZHyxqsaLSpkK7Q0q5F53Y0lgVstRQlyqyonHad_bV3kYvSwc2x971sOslGj_58-TAbDee-pCFlfh4klKaURSxIIGfpKgciRcwipVaEKmDJigQ4VgmLZMoSnKYyjFsoEikxi4O-d3ewra153YFr-MbsbNV-5AFpMyRRlEYta3BgSWucs5Dz2uqtsHtOMO8y513m_JR5K0gPgjddwv4fNh-Op4s_7Q8feYka</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Hungenberg, Julian</creator><creator>Hochgesang, Adrian</creator><creator>Meichsner, Florian</creator><creator>Thelakkat, Mukundan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8675-1398</orcidid></search><sort><creationdate>20241001</creationdate><title>Self‐Doped Mixed Ionic‐Electronic Conductors to Tune the Threshold Voltage and the Mode of Operation in Organic Electrochemical Transistors</title><author>Hungenberg, Julian ; Hochgesang, Adrian ; Meichsner, Florian ; Thelakkat, Mukundan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2427-f38229275738ef79bfe1ca675ddb12de78b1306d875c978099c466d8a8cc0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Bioelectricity</topic><topic>bioelectronics</topic><topic>Carrier density</topic><topic>Conductors</topic><topic>conjugated polyelectrolytes</topic><topic>copolymer</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>Current carriers</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Ethylene glycol</topic><topic>Monomers</topic><topic>Photoelectrons</topic><topic>Polyelectrolytes</topic><topic>polythiophene</topic><topic>self‐compensation</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hungenberg, Julian</creatorcontrib><creatorcontrib>Hochgesang, Adrian</creatorcontrib><creatorcontrib>Meichsner, Florian</creatorcontrib><creatorcontrib>Thelakkat, Mukundan</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hungenberg, Julian</au><au>Hochgesang, Adrian</au><au>Meichsner, Florian</au><au>Thelakkat, Mukundan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Doped Mixed Ionic‐Electronic Conductors to Tune the Threshold Voltage and the Mode of Operation in Organic Electrochemical Transistors</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>44</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Organic mixed ionic‐electronic conductors with tunable doping, low threshold voltages, and air stability are crucial for bioelectronic applications. A homopolymer based on an alkoxy thiophene monomer and its copolymer with a thiophene carrying ethylene glycol side chains are synthesized and converted to self‐doped conjugated polyelectrolytes, P3HOTS‐TMA+, and P3HOTS‐TMA+‐co‐P3MEEET. The self‐doping occurs during the conversion to polyelectrolytes. Both polyelectrolytes show high electrical conductivity without any external dopants. UV–Vis–NIR spectroscopy and spectroelectrochemistry confirm excellent air stability of the doped state. In an organic electrochemical transistor (OECT), the P3HOTS‐TMA+ operates in depletion mode, while P3HOTS‐TMA+‐co‐P3MEEET exhibits accumulation mode of operation with low threshold voltage, both showing fast response times. On the other hand, the non‐doped homopolymer, P3MEEET, shows a high negative threshold voltage in accumulation mode. Thus, copolymerization with the self‐dopable monomer changes the mode of operation as well as the threshold voltage substantially. Ultraviolet photoelectron spectroscopy reveals a considerable reduction of the hole injection barrier for the self‐doped system P3HOTS‐TMA+. Mott‐Schottky analysis shows reduction in charge carrier concentration in the copolymer compared to the homopolymer. Thus, the copolymerization strategy with a self‐dopable monomer is an efficient tool for tuning the degree of doping leading to low threshold voltage in OECTs. Self‐doped, air‐stable organic mixed ionic‐electronic conductors showing high electrical conductivity are synthesized. A copolymerization with a not self‐dopable comonomer is demonstrated to tune the degree of doping and the mode of operation in electrochemical transistors. This copolymer operates in the accumulation mode with a low threshold voltage, which make these materials highly interesting for applications in neuromorphic computing and bioelectronics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202407067</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8675-1398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (44), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3120215595
source Access via Wiley Online Library
subjects Accumulation
Bioelectricity
bioelectronics
Carrier density
Conductors
conjugated polyelectrolytes
copolymer
Copolymerization
Copolymers
Current carriers
Doping
Electrical resistivity
Ethylene glycol
Monomers
Photoelectrons
Polyelectrolytes
polythiophene
self‐compensation
Spectrum analysis
Stability
Threshold voltage
Transistors
title Self‐Doped Mixed Ionic‐Electronic Conductors to Tune the Threshold Voltage and the Mode of Operation in Organic Electrochemical Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Doped%20Mixed%20Ionic%E2%80%90Electronic%20Conductors%20to%20Tune%20the%20Threshold%20Voltage%20and%20the%20Mode%20of%20Operation%20in%20Organic%20Electrochemical%20Transistors&rft.jtitle=Advanced%20functional%20materials&rft.au=Hungenberg,%20Julian&rft.date=2024-10-01&rft.volume=34&rft.issue=44&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202407067&rft_dat=%3Cproquest_cross%3E3120215595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120215595&rft_id=info:pmid/&rfr_iscdi=true