Molecular Mechanisms and Enhancement of Piezoelectricity in the M13 Virus

Understanding the structure and function of bioelectric materials is challenging due to the complex nature of biomaterials and a lack of appropriate tools. The precisely defined structures and genetic tunability of viruses provide an excellent model system to investigate bioelectrical behavior in bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (44), p.n/a
Hauptverfasser: Kim, Han, Lee, Seung‐Wuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page
container_title Advanced functional materials
container_volume 34
creator Kim, Han
Lee, Seung‐Wuk
description Understanding the structure and function of bioelectric materials is challenging due to the complex nature of biomaterials and a lack of appropriate tools. The precisely defined structures and genetic tunability of viruses provide an excellent model system to investigate bioelectrical behavior in biomaterials. This study presents the molecular mechanisms of piezoelectricity in the M13 bacteriophage (phage) under various mechanical stresses for bio‐piezoelectric generation. A computational approach is used to calculate the piezoelectric tensors of the M13 phage and quantify its direction‐dependent dipole moments. By computationally designing negatively charged residues on the phage surface, the surface charge density is enhanced to 16.7 µC cm−2. Using genetic engineering, phages are experimentally designed with different charges and tail structures to create model phage nanostructures, including individual phages, vertically standing phage films, and horizontally aligned phage films. Their vertical, horizontal, and shear‐mode piezoelectric properties are then measured using scanning probe microscopy techniques. The resulting phage‐based piezoelectric energy generators exhibit an effective piezoelectric coefficient of 15.4 pm V−1 and a power density of 4.2 µW cm−2. This phage‐based bioengineering approach provides a versatile platform for investigating fundamental mechanisms of bioelectricity and designing bioelectric materials for applications in energy harvesting, biomemory, and biosensors. A comprehensive understanding of the molecular mechanisms of piezoelectricity in the M13 virus is demonstrated. Bio‐piezoelectricity is manifested by directional‐dependent dipole moments of the protein and can be manipulated by surface charge genetic engineering. This bio‐piezoelectricity broadens the horizons for designing and producing bioelectrical materials and energy systems.
doi_str_mv 10.1002/adfm.202407462
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120215588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120215588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2022-d323382339ca3acfe32a1fb17520c10028b9ef8916433a1fa2a489dab3787dab3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrV49BzxvzST7kT2W2mqhix5UvIVsNqEp-1GTXaT-erNU6tHD8GaY9-bNDEK3QGZACL2XlWlmlNCYZHFKz9AEUkgjRig_P-XwcYmuvN8RAlnG4glaF12t1VBLhwuttrK1vvFYthVetqFSutFtjzuDX6z-7nTg9s4q2x-wbXG_1bgAht-tG_w1ujCy9vrmF6fobbV8XTxFm-fH9WK-iVTYjUYVo4zxELmSTCqjGZVgSsgSStR4By9zbXgOacxY6EgqY55XsmQZz0aYorvj3L3rPgfte7HrBtcGS8EgWECScB5YsyNLuc57p43YO9tIdxBAxGgjxneJ07uCID8KvmytD_-wxfxhVfxpfwAOG21z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120215588</pqid></control><display><type>article</type><title>Molecular Mechanisms and Enhancement of Piezoelectricity in the M13 Virus</title><source>Wiley Online Library All Journals</source><creator>Kim, Han ; Lee, Seung‐Wuk</creator><creatorcontrib>Kim, Han ; Lee, Seung‐Wuk</creatorcontrib><description>Understanding the structure and function of bioelectric materials is challenging due to the complex nature of biomaterials and a lack of appropriate tools. The precisely defined structures and genetic tunability of viruses provide an excellent model system to investigate bioelectrical behavior in biomaterials. This study presents the molecular mechanisms of piezoelectricity in the M13 bacteriophage (phage) under various mechanical stresses for bio‐piezoelectric generation. A computational approach is used to calculate the piezoelectric tensors of the M13 phage and quantify its direction‐dependent dipole moments. By computationally designing negatively charged residues on the phage surface, the surface charge density is enhanced to 16.7 µC cm−2. Using genetic engineering, phages are experimentally designed with different charges and tail structures to create model phage nanostructures, including individual phages, vertically standing phage films, and horizontally aligned phage films. Their vertical, horizontal, and shear‐mode piezoelectric properties are then measured using scanning probe microscopy techniques. The resulting phage‐based piezoelectric energy generators exhibit an effective piezoelectric coefficient of 15.4 pm V−1 and a power density of 4.2 µW cm−2. This phage‐based bioengineering approach provides a versatile platform for investigating fundamental mechanisms of bioelectricity and designing bioelectric materials for applications in energy harvesting, biomemory, and biosensors. A comprehensive understanding of the molecular mechanisms of piezoelectricity in the M13 virus is demonstrated. Bio‐piezoelectricity is manifested by directional‐dependent dipole moments of the protein and can be manipulated by surface charge genetic engineering. This bio‐piezoelectricity broadens the horizons for designing and producing bioelectrical materials and energy systems.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202407462</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bioelectricity ; Bioengineering ; Biomedical materials ; bionanotechnology ; Biosensors ; Charge density ; Dipole moments ; Energy harvesting ; Genetic engineering ; Molecular structure ; Phages ; Piezoelectricity ; Scanning probe microscopy ; Surface charge ; Tensors ; virus</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (44), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2022-d323382339ca3acfe32a1fb17520c10028b9ef8916433a1fa2a489dab3787dab3</cites><orcidid>0000-0002-0501-8432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202407462$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202407462$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Kim, Han</creatorcontrib><creatorcontrib>Lee, Seung‐Wuk</creatorcontrib><title>Molecular Mechanisms and Enhancement of Piezoelectricity in the M13 Virus</title><title>Advanced functional materials</title><description>Understanding the structure and function of bioelectric materials is challenging due to the complex nature of biomaterials and a lack of appropriate tools. The precisely defined structures and genetic tunability of viruses provide an excellent model system to investigate bioelectrical behavior in biomaterials. This study presents the molecular mechanisms of piezoelectricity in the M13 bacteriophage (phage) under various mechanical stresses for bio‐piezoelectric generation. A computational approach is used to calculate the piezoelectric tensors of the M13 phage and quantify its direction‐dependent dipole moments. By computationally designing negatively charged residues on the phage surface, the surface charge density is enhanced to 16.7 µC cm−2. Using genetic engineering, phages are experimentally designed with different charges and tail structures to create model phage nanostructures, including individual phages, vertically standing phage films, and horizontally aligned phage films. Their vertical, horizontal, and shear‐mode piezoelectric properties are then measured using scanning probe microscopy techniques. The resulting phage‐based piezoelectric energy generators exhibit an effective piezoelectric coefficient of 15.4 pm V−1 and a power density of 4.2 µW cm−2. This phage‐based bioengineering approach provides a versatile platform for investigating fundamental mechanisms of bioelectricity and designing bioelectric materials for applications in energy harvesting, biomemory, and biosensors. A comprehensive understanding of the molecular mechanisms of piezoelectricity in the M13 virus is demonstrated. Bio‐piezoelectricity is manifested by directional‐dependent dipole moments of the protein and can be manipulated by surface charge genetic engineering. This bio‐piezoelectricity broadens the horizons for designing and producing bioelectrical materials and energy systems.</description><subject>Bioelectricity</subject><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>bionanotechnology</subject><subject>Biosensors</subject><subject>Charge density</subject><subject>Dipole moments</subject><subject>Energy harvesting</subject><subject>Genetic engineering</subject><subject>Molecular structure</subject><subject>Phages</subject><subject>Piezoelectricity</subject><subject>Scanning probe microscopy</subject><subject>Surface charge</subject><subject>Tensors</subject><subject>virus</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrV49BzxvzST7kT2W2mqhix5UvIVsNqEp-1GTXaT-erNU6tHD8GaY9-bNDEK3QGZACL2XlWlmlNCYZHFKz9AEUkgjRig_P-XwcYmuvN8RAlnG4glaF12t1VBLhwuttrK1vvFYthVetqFSutFtjzuDX6z-7nTg9s4q2x-wbXG_1bgAht-tG_w1ujCy9vrmF6fobbV8XTxFm-fH9WK-iVTYjUYVo4zxELmSTCqjGZVgSsgSStR4By9zbXgOacxY6EgqY55XsmQZz0aYorvj3L3rPgfte7HrBtcGS8EgWECScB5YsyNLuc57p43YO9tIdxBAxGgjxneJ07uCID8KvmytD_-wxfxhVfxpfwAOG21z</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Kim, Han</creator><creator>Lee, Seung‐Wuk</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0501-8432</orcidid></search><sort><creationdate>20241001</creationdate><title>Molecular Mechanisms and Enhancement of Piezoelectricity in the M13 Virus</title><author>Kim, Han ; Lee, Seung‐Wuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2022-d323382339ca3acfe32a1fb17520c10028b9ef8916433a1fa2a489dab3787dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioelectricity</topic><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>bionanotechnology</topic><topic>Biosensors</topic><topic>Charge density</topic><topic>Dipole moments</topic><topic>Energy harvesting</topic><topic>Genetic engineering</topic><topic>Molecular structure</topic><topic>Phages</topic><topic>Piezoelectricity</topic><topic>Scanning probe microscopy</topic><topic>Surface charge</topic><topic>Tensors</topic><topic>virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Han</creatorcontrib><creatorcontrib>Lee, Seung‐Wuk</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Han</au><au>Lee, Seung‐Wuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanisms and Enhancement of Piezoelectricity in the M13 Virus</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>44</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Understanding the structure and function of bioelectric materials is challenging due to the complex nature of biomaterials and a lack of appropriate tools. The precisely defined structures and genetic tunability of viruses provide an excellent model system to investigate bioelectrical behavior in biomaterials. This study presents the molecular mechanisms of piezoelectricity in the M13 bacteriophage (phage) under various mechanical stresses for bio‐piezoelectric generation. A computational approach is used to calculate the piezoelectric tensors of the M13 phage and quantify its direction‐dependent dipole moments. By computationally designing negatively charged residues on the phage surface, the surface charge density is enhanced to 16.7 µC cm−2. Using genetic engineering, phages are experimentally designed with different charges and tail structures to create model phage nanostructures, including individual phages, vertically standing phage films, and horizontally aligned phage films. Their vertical, horizontal, and shear‐mode piezoelectric properties are then measured using scanning probe microscopy techniques. The resulting phage‐based piezoelectric energy generators exhibit an effective piezoelectric coefficient of 15.4 pm V−1 and a power density of 4.2 µW cm−2. This phage‐based bioengineering approach provides a versatile platform for investigating fundamental mechanisms of bioelectricity and designing bioelectric materials for applications in energy harvesting, biomemory, and biosensors. A comprehensive understanding of the molecular mechanisms of piezoelectricity in the M13 virus is demonstrated. Bio‐piezoelectricity is manifested by directional‐dependent dipole moments of the protein and can be manipulated by surface charge genetic engineering. This bio‐piezoelectricity broadens the horizons for designing and producing bioelectrical materials and energy systems.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202407462</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0501-8432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (44), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3120215588
source Wiley Online Library All Journals
subjects Bioelectricity
Bioengineering
Biomedical materials
bionanotechnology
Biosensors
Charge density
Dipole moments
Energy harvesting
Genetic engineering
Molecular structure
Phages
Piezoelectricity
Scanning probe microscopy
Surface charge
Tensors
virus
title Molecular Mechanisms and Enhancement of Piezoelectricity in the M13 Virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanisms%20and%20Enhancement%20of%20Piezoelectricity%20in%20the%20M13%20Virus&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Han&rft.date=2024-10-01&rft.volume=34&rft.issue=44&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202407462&rft_dat=%3Cproquest_cross%3E3120215588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120215588&rft_id=info:pmid/&rfr_iscdi=true