Controllable Growth of Crystal Facets Enables Superb Cycling Stability of Anode Material for Potassium Ion Batteries

To enrich the crystal growth strategies for the booming applications concerning lattice structure, a preferred facet‐growth method is proposed for solvothermal synthesis of target (BiO)2CO3 in the two‐phase system. The dominant crystal phase can be regulated from α‐Fe2O3 to (BiO)2CO3 by properly inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (44), p.n/a
Hauptverfasser: Wang, Lu, Li, Yi, Wang, Bin, Jing, Zhongxin, Chen, Ming, Zhai, Yanjun, Kong, Zhen, Iqbal, Sikandar, Zeng, Suyuan, Sun, Xiuping, Chen, Yanpeng, Dou, Jianmin, Xu, Liqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page
container_title Advanced functional materials
container_volume 34
creator Wang, Lu
Li, Yi
Wang, Bin
Jing, Zhongxin
Chen, Ming
Zhai, Yanjun
Kong, Zhen
Iqbal, Sikandar
Zeng, Suyuan
Sun, Xiuping
Chen, Yanpeng
Dou, Jianmin
Xu, Liqiang
description To enrich the crystal growth strategies for the booming applications concerning lattice structure, a preferred facet‐growth method is proposed for solvothermal synthesis of target (BiO)2CO3 in the two‐phase system. The dominant crystal phase can be regulated from α‐Fe2O3 to (BiO)2CO3 by properly increasing dosage of Bi feedstock, and the optimized composite is composed of (BiO)2CO3 nanocrystal (≈10 nm) and amorphous iron oxide (defined as “FOB‐50”). Based on experimental characterizations and theoretical calculations, the highly matched lattice between (006)/(0012) facets of α‐Fe2O3 and {010} facet group of (BiO)2CO3 involving orientation of Fe─O─Fe bond and Bi─O─Bi bond is verified to facilitate the interaction between the above facets, resulting in preferred growth of {010} dominated by (040) facet in (BiO)2CO3 and its composites. The structural merits can not only enable the FOB‐50‐based electrodes to achieve a high capacity and unprecedentedly stable cyclic performances for 1500 cycles/a long time‐span of 32 months as anode materials, but also ensure the full‐cell to well inherit the electrochemical features of the cathode in potassium ion batteries (PIBs). This work can provide new insight into lattice regulation for bismuth‐based materials and expand their application as electrodes for high performance PIBs and lithium ion batteries. The preferred growth of (BiO)2CO3 with dominant (040) crystalfacets is achieved by the α‐Fe2O3 assisted lattice matching strategy. The as‐obtained (BiO)2CO3/Fe2O3 composite as anode displays distinguished high specific capacity and long‐term cyclic performance in half/ full cells not only for potassium ion batteries but also for lithium ion batteries.
doi_str_mv 10.1002/adfm.202406988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120215352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120215352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2028-75d9d7b985f2c17db12d133234f3c24cbae7f11039596ae27abc92d54a10d1d13</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxRdRsFavngOeWzPJfh7r2taCRaEK3kI2H7ol3dQkS9n_3l0q9ehpBt77zWNeFN0CngLG5J5LvZsSTGKcFnl-Fo0ghXRCMcnPTzt8XEZX3m8xhiyj8SgKpW2Cs8bwyii0dPYQvpDVqHSdD9ygBRcqeDRvBt2jTbtXrkJlJ0zdfKJN4FVt6tANyKyxUqE1D8rVPamtQ682cO_rdodWtkEPPAya8tfRhebGq5vfOY7eF_O38mny_LJclbPniejfyCdZIguZVUWeaCIgkxUQCZQSGmsqSCwqrjINgGmRFClXJOOVKIhMYg5YQm8dR3fHu3tnv1vlA9va1jV9JKPQR0BCE9K7pkeXcNZ7pzTbu3rHXccAs6FZNjTLTs32QHEEDrVR3T9uNntcrP_YH-0Nfb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120215352</pqid></control><display><type>article</type><title>Controllable Growth of Crystal Facets Enables Superb Cycling Stability of Anode Material for Potassium Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Lu ; Li, Yi ; Wang, Bin ; Jing, Zhongxin ; Chen, Ming ; Zhai, Yanjun ; Kong, Zhen ; Iqbal, Sikandar ; Zeng, Suyuan ; Sun, Xiuping ; Chen, Yanpeng ; Dou, Jianmin ; Xu, Liqiang</creator><creatorcontrib>Wang, Lu ; Li, Yi ; Wang, Bin ; Jing, Zhongxin ; Chen, Ming ; Zhai, Yanjun ; Kong, Zhen ; Iqbal, Sikandar ; Zeng, Suyuan ; Sun, Xiuping ; Chen, Yanpeng ; Dou, Jianmin ; Xu, Liqiang</creatorcontrib><description>To enrich the crystal growth strategies for the booming applications concerning lattice structure, a preferred facet‐growth method is proposed for solvothermal synthesis of target (BiO)2CO3 in the two‐phase system. The dominant crystal phase can be regulated from α‐Fe2O3 to (BiO)2CO3 by properly increasing dosage of Bi feedstock, and the optimized composite is composed of (BiO)2CO3 nanocrystal (≈10 nm) and amorphous iron oxide (defined as “FOB‐50”). Based on experimental characterizations and theoretical calculations, the highly matched lattice between (006)/(0012) facets of α‐Fe2O3 and {010} facet group of (BiO)2CO3 involving orientation of Fe─O─Fe bond and Bi─O─Bi bond is verified to facilitate the interaction between the above facets, resulting in preferred growth of {010} dominated by (040) facet in (BiO)2CO3 and its composites. The structural merits can not only enable the FOB‐50‐based electrodes to achieve a high capacity and unprecedentedly stable cyclic performances for 1500 cycles/a long time‐span of 32 months as anode materials, but also ensure the full‐cell to well inherit the electrochemical features of the cathode in potassium ion batteries (PIBs). This work can provide new insight into lattice regulation for bismuth‐based materials and expand their application as electrodes for high performance PIBs and lithium ion batteries. The preferred growth of (BiO)2CO3 with dominant (040) crystalfacets is achieved by the α‐Fe2O3 assisted lattice matching strategy. The as‐obtained (BiO)2CO3/Fe2O3 composite as anode displays distinguished high specific capacity and long‐term cyclic performance in half/ full cells not only for potassium ion batteries but also for lithium ion batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202406988</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Bismuth ; Chemical synthesis ; Controllability ; Crystal growth ; Crystal lattices ; Crystal structure ; electrochemical mechanism ; Electrode materials ; Electrodes ; Ferric oxide ; full cell ; Iron oxides ; Lattice matching ; Lithium-ion batteries ; Potassium ; potassium ion batteries ; pouch cell ; preferred facet growth</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (44), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2028-75d9d7b985f2c17db12d133234f3c24cbae7f11039596ae27abc92d54a10d1d13</cites><orcidid>0000-0002-0453-120X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202406988$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202406988$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Jing, Zhongxin</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Zhai, Yanjun</creatorcontrib><creatorcontrib>Kong, Zhen</creatorcontrib><creatorcontrib>Iqbal, Sikandar</creatorcontrib><creatorcontrib>Zeng, Suyuan</creatorcontrib><creatorcontrib>Sun, Xiuping</creatorcontrib><creatorcontrib>Chen, Yanpeng</creatorcontrib><creatorcontrib>Dou, Jianmin</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><title>Controllable Growth of Crystal Facets Enables Superb Cycling Stability of Anode Material for Potassium Ion Batteries</title><title>Advanced functional materials</title><description>To enrich the crystal growth strategies for the booming applications concerning lattice structure, a preferred facet‐growth method is proposed for solvothermal synthesis of target (BiO)2CO3 in the two‐phase system. The dominant crystal phase can be regulated from α‐Fe2O3 to (BiO)2CO3 by properly increasing dosage of Bi feedstock, and the optimized composite is composed of (BiO)2CO3 nanocrystal (≈10 nm) and amorphous iron oxide (defined as “FOB‐50”). Based on experimental characterizations and theoretical calculations, the highly matched lattice between (006)/(0012) facets of α‐Fe2O3 and {010} facet group of (BiO)2CO3 involving orientation of Fe─O─Fe bond and Bi─O─Bi bond is verified to facilitate the interaction between the above facets, resulting in preferred growth of {010} dominated by (040) facet in (BiO)2CO3 and its composites. The structural merits can not only enable the FOB‐50‐based electrodes to achieve a high capacity and unprecedentedly stable cyclic performances for 1500 cycles/a long time‐span of 32 months as anode materials, but also ensure the full‐cell to well inherit the electrochemical features of the cathode in potassium ion batteries (PIBs). This work can provide new insight into lattice regulation for bismuth‐based materials and expand their application as electrodes for high performance PIBs and lithium ion batteries. The preferred growth of (BiO)2CO3 with dominant (040) crystalfacets is achieved by the α‐Fe2O3 assisted lattice matching strategy. The as‐obtained (BiO)2CO3/Fe2O3 composite as anode displays distinguished high specific capacity and long‐term cyclic performance in half/ full cells not only for potassium ion batteries but also for lithium ion batteries.</description><subject>Anodes</subject><subject>Bismuth</subject><subject>Chemical synthesis</subject><subject>Controllability</subject><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>electrochemical mechanism</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Ferric oxide</subject><subject>full cell</subject><subject>Iron oxides</subject><subject>Lattice matching</subject><subject>Lithium-ion batteries</subject><subject>Potassium</subject><subject>potassium ion batteries</subject><subject>pouch cell</subject><subject>preferred facet growth</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxRdRsFavngOeWzPJfh7r2taCRaEK3kI2H7ol3dQkS9n_3l0q9ehpBt77zWNeFN0CngLG5J5LvZsSTGKcFnl-Fo0ghXRCMcnPTzt8XEZX3m8xhiyj8SgKpW2Cs8bwyii0dPYQvpDVqHSdD9ygBRcqeDRvBt2jTbtXrkJlJ0zdfKJN4FVt6tANyKyxUqE1D8rVPamtQ682cO_rdodWtkEPPAya8tfRhebGq5vfOY7eF_O38mny_LJclbPniejfyCdZIguZVUWeaCIgkxUQCZQSGmsqSCwqrjINgGmRFClXJOOVKIhMYg5YQm8dR3fHu3tnv1vlA9va1jV9JKPQR0BCE9K7pkeXcNZ7pzTbu3rHXccAs6FZNjTLTs32QHEEDrVR3T9uNntcrP_YH-0Nfb4</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Lu</creator><creator>Li, Yi</creator><creator>Wang, Bin</creator><creator>Jing, Zhongxin</creator><creator>Chen, Ming</creator><creator>Zhai, Yanjun</creator><creator>Kong, Zhen</creator><creator>Iqbal, Sikandar</creator><creator>Zeng, Suyuan</creator><creator>Sun, Xiuping</creator><creator>Chen, Yanpeng</creator><creator>Dou, Jianmin</creator><creator>Xu, Liqiang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0453-120X</orcidid></search><sort><creationdate>20241001</creationdate><title>Controllable Growth of Crystal Facets Enables Superb Cycling Stability of Anode Material for Potassium Ion Batteries</title><author>Wang, Lu ; Li, Yi ; Wang, Bin ; Jing, Zhongxin ; Chen, Ming ; Zhai, Yanjun ; Kong, Zhen ; Iqbal, Sikandar ; Zeng, Suyuan ; Sun, Xiuping ; Chen, Yanpeng ; Dou, Jianmin ; Xu, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2028-75d9d7b985f2c17db12d133234f3c24cbae7f11039596ae27abc92d54a10d1d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Bismuth</topic><topic>Chemical synthesis</topic><topic>Controllability</topic><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>electrochemical mechanism</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Ferric oxide</topic><topic>full cell</topic><topic>Iron oxides</topic><topic>Lattice matching</topic><topic>Lithium-ion batteries</topic><topic>Potassium</topic><topic>potassium ion batteries</topic><topic>pouch cell</topic><topic>preferred facet growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Jing, Zhongxin</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Zhai, Yanjun</creatorcontrib><creatorcontrib>Kong, Zhen</creatorcontrib><creatorcontrib>Iqbal, Sikandar</creatorcontrib><creatorcontrib>Zeng, Suyuan</creatorcontrib><creatorcontrib>Sun, Xiuping</creatorcontrib><creatorcontrib>Chen, Yanpeng</creatorcontrib><creatorcontrib>Dou, Jianmin</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lu</au><au>Li, Yi</au><au>Wang, Bin</au><au>Jing, Zhongxin</au><au>Chen, Ming</au><au>Zhai, Yanjun</au><au>Kong, Zhen</au><au>Iqbal, Sikandar</au><au>Zeng, Suyuan</au><au>Sun, Xiuping</au><au>Chen, Yanpeng</au><au>Dou, Jianmin</au><au>Xu, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable Growth of Crystal Facets Enables Superb Cycling Stability of Anode Material for Potassium Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>44</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>To enrich the crystal growth strategies for the booming applications concerning lattice structure, a preferred facet‐growth method is proposed for solvothermal synthesis of target (BiO)2CO3 in the two‐phase system. The dominant crystal phase can be regulated from α‐Fe2O3 to (BiO)2CO3 by properly increasing dosage of Bi feedstock, and the optimized composite is composed of (BiO)2CO3 nanocrystal (≈10 nm) and amorphous iron oxide (defined as “FOB‐50”). Based on experimental characterizations and theoretical calculations, the highly matched lattice between (006)/(0012) facets of α‐Fe2O3 and {010} facet group of (BiO)2CO3 involving orientation of Fe─O─Fe bond and Bi─O─Bi bond is verified to facilitate the interaction between the above facets, resulting in preferred growth of {010} dominated by (040) facet in (BiO)2CO3 and its composites. The structural merits can not only enable the FOB‐50‐based electrodes to achieve a high capacity and unprecedentedly stable cyclic performances for 1500 cycles/a long time‐span of 32 months as anode materials, but also ensure the full‐cell to well inherit the electrochemical features of the cathode in potassium ion batteries (PIBs). This work can provide new insight into lattice regulation for bismuth‐based materials and expand their application as electrodes for high performance PIBs and lithium ion batteries. The preferred growth of (BiO)2CO3 with dominant (040) crystalfacets is achieved by the α‐Fe2O3 assisted lattice matching strategy. The as‐obtained (BiO)2CO3/Fe2O3 composite as anode displays distinguished high specific capacity and long‐term cyclic performance in half/ full cells not only for potassium ion batteries but also for lithium ion batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202406988</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0453-120X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (44), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3120215352
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Bismuth
Chemical synthesis
Controllability
Crystal growth
Crystal lattices
Crystal structure
electrochemical mechanism
Electrode materials
Electrodes
Ferric oxide
full cell
Iron oxides
Lattice matching
Lithium-ion batteries
Potassium
potassium ion batteries
pouch cell
preferred facet growth
title Controllable Growth of Crystal Facets Enables Superb Cycling Stability of Anode Material for Potassium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20Growth%20of%20Crystal%20Facets%20Enables%20Superb%20Cycling%20Stability%20of%20Anode%20Material%20for%20Potassium%20Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Lu&rft.date=2024-10-01&rft.volume=34&rft.issue=44&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202406988&rft_dat=%3Cproquest_cross%3E3120215352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120215352&rft_id=info:pmid/&rfr_iscdi=true