A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model
Summary Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article,...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2024-11, Vol.36 (26), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 26 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 36 |
creator | Kakugawa, Hirotsugu Kamei, Sayaka Shibata, Masahiro Ooshita, Fukuhito |
description | Summary
Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O(n)$$ O(n) $$ steps and the space complexity is O(logn)$$ O\left(\log n\right) $$ bits, where n$$ n $$ is the number of processes. Finally, we extend the notion of 1‐MIS to p$$ p $$‐MIS for each nonnegative integer p$$ p $$, and compare the set sizes of p$$ p $$‐MIS (p=0,1,2,…$$ p=0,1,2,\dots $$) and the maximum independent set. |
doi_str_mv | 10.1002/cpe.8281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119907967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119907967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1841-2318514116c133a137863197a6b97afd28446791a63c40b7c81518ed1b054fcc3</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_AgCs4p-BECXrx05mnSND2OMedgoqCeQ5qmW0ZfZtIi8-RH8DP6ScysePOSBPJ7XvgjdAlkAoTEN3pnJiIWcIRGkNA4Ipyy4793zE_RmfdbQgAIhRGSU-xNVX59fPpO5bay77ZZ48L6ztm870yBVbVune02NS5bh7uNwRD0_fIJ71ybV6bGfVOY4edQpxptAqC4bgtTnaOTUlXeXPzeY_RyO3-e3UWrh8VyNl1FGgSDKKYgEmAAXAOlCmgqOIUsVTwPR1nEgjGeZqA41YzkqRaQgDAF5CRhpdZ0jK6GvmGp1974Tm7b3jVhpKQAWUbSjKdBXQ9Ku9Z7Z0q5c7ZWbi-ByEN8MsQnD_EFGg30zVZm_6-Ts8f5j_8Gp1hxvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119907967</pqid></control><display><type>article</type><title>A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kakugawa, Hirotsugu ; Kamei, Sayaka ; Shibata, Masahiro ; Ooshita, Fukuhito</creator><creatorcontrib>Kakugawa, Hirotsugu ; Kamei, Sayaka ; Shibata, Masahiro ; Ooshita, Fukuhito</creatorcontrib><description>Summary
Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O(n)$$ O(n) $$ steps and the space complexity is O(logn)$$ O\left(\log n\right) $$ bits, where n$$ n $$ is the number of processes. Finally, we extend the notion of 1‐MIS to p$$ p $$‐MIS for each nonnegative integer p$$ p $$, and compare the set sizes of p$$ p $$‐MIS (p=0,1,2,…$$ p=0,1,2,\dots $$) and the maximum independent set.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.8281</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>1‐MIS ; Algorithms ; Complexity ; distributed algorithm ; Fault tolerance ; Independent variables ; maximal independent set ; self‐stabilization ; Stabilization ; Topology</subject><ispartof>Concurrency and computation, 2024-11, Vol.36 (26), p.n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1841-2318514116c133a137863197a6b97afd28446791a63c40b7c81518ed1b054fcc3</cites><orcidid>0000-0001-9400-1095 ; 0000-0003-1414-8033 ; 0000-0003-1087-410X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.8281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.8281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kakugawa, Hirotsugu</creatorcontrib><creatorcontrib>Kamei, Sayaka</creatorcontrib><creatorcontrib>Shibata, Masahiro</creatorcontrib><creatorcontrib>Ooshita, Fukuhito</creatorcontrib><title>A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model</title><title>Concurrency and computation</title><description>Summary
Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O(n)$$ O(n) $$ steps and the space complexity is O(logn)$$ O\left(\log n\right) $$ bits, where n$$ n $$ is the number of processes. Finally, we extend the notion of 1‐MIS to p$$ p $$‐MIS for each nonnegative integer p$$ p $$, and compare the set sizes of p$$ p $$‐MIS (p=0,1,2,…$$ p=0,1,2,\dots $$) and the maximum independent set.</description><subject>1‐MIS</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>distributed algorithm</subject><subject>Fault tolerance</subject><subject>Independent variables</subject><subject>maximal independent set</subject><subject>self‐stabilization</subject><subject>Stabilization</subject><subject>Topology</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYB_AgCs4p-BECXrx05mnSND2OMedgoqCeQ5qmW0ZfZtIi8-RH8DP6ScysePOSBPJ7XvgjdAlkAoTEN3pnJiIWcIRGkNA4Ipyy4793zE_RmfdbQgAIhRGSU-xNVX59fPpO5bay77ZZ48L6ztm870yBVbVune02NS5bh7uNwRD0_fIJ71ybV6bGfVOY4edQpxptAqC4bgtTnaOTUlXeXPzeY_RyO3-e3UWrh8VyNl1FGgSDKKYgEmAAXAOlCmgqOIUsVTwPR1nEgjGeZqA41YzkqRaQgDAF5CRhpdZ0jK6GvmGp1974Tm7b3jVhpKQAWUbSjKdBXQ9Ku9Z7Z0q5c7ZWbi-ByEN8MsQnD_EFGg30zVZm_6-Ts8f5j_8Gp1hxvg</recordid><startdate>20241130</startdate><enddate>20241130</enddate><creator>Kakugawa, Hirotsugu</creator><creator>Kamei, Sayaka</creator><creator>Shibata, Masahiro</creator><creator>Ooshita, Fukuhito</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9400-1095</orcidid><orcidid>https://orcid.org/0000-0003-1414-8033</orcidid><orcidid>https://orcid.org/0000-0003-1087-410X</orcidid></search><sort><creationdate>20241130</creationdate><title>A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model</title><author>Kakugawa, Hirotsugu ; Kamei, Sayaka ; Shibata, Masahiro ; Ooshita, Fukuhito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1841-2318514116c133a137863197a6b97afd28446791a63c40b7c81518ed1b054fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1‐MIS</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>distributed algorithm</topic><topic>Fault tolerance</topic><topic>Independent variables</topic><topic>maximal independent set</topic><topic>self‐stabilization</topic><topic>Stabilization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakugawa, Hirotsugu</creatorcontrib><creatorcontrib>Kamei, Sayaka</creatorcontrib><creatorcontrib>Shibata, Masahiro</creatorcontrib><creatorcontrib>Ooshita, Fukuhito</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakugawa, Hirotsugu</au><au>Kamei, Sayaka</au><au>Shibata, Masahiro</au><au>Ooshita, Fukuhito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model</atitle><jtitle>Concurrency and computation</jtitle><date>2024-11-30</date><risdate>2024</risdate><volume>36</volume><issue>26</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O(n)$$ O(n) $$ steps and the space complexity is O(logn)$$ O\left(\log n\right) $$ bits, where n$$ n $$ is the number of processes. Finally, we extend the notion of 1‐MIS to p$$ p $$‐MIS for each nonnegative integer p$$ p $$, and compare the set sizes of p$$ p $$‐MIS (p=0,1,2,…$$ p=0,1,2,\dots $$) and the maximum independent set.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.8281</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9400-1095</orcidid><orcidid>https://orcid.org/0000-0003-1414-8033</orcidid><orcidid>https://orcid.org/0000-0003-1087-410X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2024-11, Vol.36 (26), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_3119907967 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 1‐MIS Algorithms Complexity distributed algorithm Fault tolerance Independent variables maximal independent set self‐stabilization Stabilization Topology |
title | A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self%E2%80%90stabilizing%20distributed%20algorithm%20for%20the%201%E2%80%90MIS%20problem%20under%20the%20distance%E2%80%903%20model&rft.jtitle=Concurrency%20and%20computation&rft.au=Kakugawa,%20Hirotsugu&rft.date=2024-11-30&rft.volume=36&rft.issue=26&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.8281&rft_dat=%3Cproquest_cross%3E3119907967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119907967&rft_id=info:pmid/&rfr_iscdi=true |