A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model

Summary Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2024-11, Vol.36 (26), p.n/a
Hauptverfasser: Kakugawa, Hirotsugu, Kamei, Sayaka, Shibata, Masahiro, Ooshita, Fukuhito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Concurrency and computation
container_volume 36
creator Kakugawa, Hirotsugu
Kamei, Sayaka
Shibata, Masahiro
Ooshita, Fukuhito
description Summary Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O(n)$$ O(n) $$ steps and the space complexity is O(logn)$$ O\left(\log n\right) $$ bits, where n$$ n $$ is the number of processes. Finally, we extend the notion of 1‐MIS to p$$ p $$‐MIS for each nonnegative integer p$$ p $$, and compare the set sizes of p$$ p $$‐MIS (p=0,1,2,…$$ p=0,1,2,\dots $$) and the maximum independent set.
doi_str_mv 10.1002/cpe.8281
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119907967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119907967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1841-2318514116c133a137863197a6b97afd28446791a63c40b7c81518ed1b054fcc3</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_AgCs4p-BECXrx05mnSND2OMedgoqCeQ5qmW0ZfZtIi8-RH8DP6ScysePOSBPJ7XvgjdAlkAoTEN3pnJiIWcIRGkNA4Ipyy4793zE_RmfdbQgAIhRGSU-xNVX59fPpO5bay77ZZ48L6ztm870yBVbVune02NS5bh7uNwRD0_fIJ71ybV6bGfVOY4edQpxptAqC4bgtTnaOTUlXeXPzeY_RyO3-e3UWrh8VyNl1FGgSDKKYgEmAAXAOlCmgqOIUsVTwPR1nEgjGeZqA41YzkqRaQgDAF5CRhpdZ0jK6GvmGp1974Tm7b3jVhpKQAWUbSjKdBXQ9Ku9Z7Z0q5c7ZWbi-ByEN8MsQnD_EFGg30zVZm_6-Ts8f5j_8Gp1hxvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119907967</pqid></control><display><type>article</type><title>A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kakugawa, Hirotsugu ; Kamei, Sayaka ; Shibata, Masahiro ; Ooshita, Fukuhito</creator><creatorcontrib>Kakugawa, Hirotsugu ; Kamei, Sayaka ; Shibata, Masahiro ; Ooshita, Fukuhito</creatorcontrib><description>Summary Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O(n)$$ O(n) $$ steps and the space complexity is O(logn)$$ O\left(\log n\right) $$ bits, where n$$ n $$ is the number of processes. Finally, we extend the notion of 1‐MIS to p$$ p $$‐MIS for each nonnegative integer p$$ p $$, and compare the set sizes of p$$ p $$‐MIS (p=0,1,2,…$$ p=0,1,2,\dots $$) and the maximum independent set.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.8281</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>1‐MIS ; Algorithms ; Complexity ; distributed algorithm ; Fault tolerance ; Independent variables ; maximal independent set ; self‐stabilization ; Stabilization ; Topology</subject><ispartof>Concurrency and computation, 2024-11, Vol.36 (26), p.n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1841-2318514116c133a137863197a6b97afd28446791a63c40b7c81518ed1b054fcc3</cites><orcidid>0000-0001-9400-1095 ; 0000-0003-1414-8033 ; 0000-0003-1087-410X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.8281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.8281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kakugawa, Hirotsugu</creatorcontrib><creatorcontrib>Kamei, Sayaka</creatorcontrib><creatorcontrib>Shibata, Masahiro</creatorcontrib><creatorcontrib>Ooshita, Fukuhito</creatorcontrib><title>A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model</title><title>Concurrency and computation</title><description>Summary Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O(n)$$ O(n) $$ steps and the space complexity is O(logn)$$ O\left(\log n\right) $$ bits, where n$$ n $$ is the number of processes. Finally, we extend the notion of 1‐MIS to p$$ p $$‐MIS for each nonnegative integer p$$ p $$, and compare the set sizes of p$$ p $$‐MIS (p=0,1,2,…$$ p=0,1,2,\dots $$) and the maximum independent set.</description><subject>1‐MIS</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>distributed algorithm</subject><subject>Fault tolerance</subject><subject>Independent variables</subject><subject>maximal independent set</subject><subject>self‐stabilization</subject><subject>Stabilization</subject><subject>Topology</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYB_AgCs4p-BECXrx05mnSND2OMedgoqCeQ5qmW0ZfZtIi8-RH8DP6ScysePOSBPJ7XvgjdAlkAoTEN3pnJiIWcIRGkNA4Ipyy4793zE_RmfdbQgAIhRGSU-xNVX59fPpO5bay77ZZ48L6ztm870yBVbVune02NS5bh7uNwRD0_fIJ71ybV6bGfVOY4edQpxptAqC4bgtTnaOTUlXeXPzeY_RyO3-e3UWrh8VyNl1FGgSDKKYgEmAAXAOlCmgqOIUsVTwPR1nEgjGeZqA41YzkqRaQgDAF5CRhpdZ0jK6GvmGp1974Tm7b3jVhpKQAWUbSjKdBXQ9Ku9Z7Z0q5c7ZWbi-ByEN8MsQnD_EFGg30zVZm_6-Ts8f5j_8Gp1hxvg</recordid><startdate>20241130</startdate><enddate>20241130</enddate><creator>Kakugawa, Hirotsugu</creator><creator>Kamei, Sayaka</creator><creator>Shibata, Masahiro</creator><creator>Ooshita, Fukuhito</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9400-1095</orcidid><orcidid>https://orcid.org/0000-0003-1414-8033</orcidid><orcidid>https://orcid.org/0000-0003-1087-410X</orcidid></search><sort><creationdate>20241130</creationdate><title>A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model</title><author>Kakugawa, Hirotsugu ; Kamei, Sayaka ; Shibata, Masahiro ; Ooshita, Fukuhito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1841-2318514116c133a137863197a6b97afd28446791a63c40b7c81518ed1b054fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1‐MIS</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>distributed algorithm</topic><topic>Fault tolerance</topic><topic>Independent variables</topic><topic>maximal independent set</topic><topic>self‐stabilization</topic><topic>Stabilization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakugawa, Hirotsugu</creatorcontrib><creatorcontrib>Kamei, Sayaka</creatorcontrib><creatorcontrib>Shibata, Masahiro</creatorcontrib><creatorcontrib>Ooshita, Fukuhito</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakugawa, Hirotsugu</au><au>Kamei, Sayaka</au><au>Shibata, Masahiro</au><au>Ooshita, Fukuhito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model</atitle><jtitle>Concurrency and computation</jtitle><date>2024-11-30</date><risdate>2024</risdate><volume>36</volume><issue>26</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary Fault‐tolerance and self‐organization are critical properties in modern distributed systems. Self‐stabilization is a class of fault‐tolerant distributed algorithms which has the ability to recover from any kind and any finite number of transient faults and topology changes. In this article, we propose a self‐stabilizing distributed algorithm for the 1‐MIS problem under the unfair central daemon assuming the distance‐3 model. Here, in the distance‐3 model, each process can refer to the values of local variables of processes within three hops. Intuitively speaking, the 1‐MIS problem is a variant of the maximal independent set (MIS) problem with improved local optimizations. The time complexity (convergence time) of our algorithm is O(n)$$ O(n) $$ steps and the space complexity is O(logn)$$ O\left(\log n\right) $$ bits, where n$$ n $$ is the number of processes. Finally, we extend the notion of 1‐MIS to p$$ p $$‐MIS for each nonnegative integer p$$ p $$, and compare the set sizes of p$$ p $$‐MIS (p=0,1,2,…$$ p=0,1,2,\dots $$) and the maximum independent set.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.8281</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9400-1095</orcidid><orcidid>https://orcid.org/0000-0003-1414-8033</orcidid><orcidid>https://orcid.org/0000-0003-1087-410X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2024-11, Vol.36 (26), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_3119907967
source Wiley Online Library Journals Frontfile Complete
subjects 1‐MIS
Algorithms
Complexity
distributed algorithm
Fault tolerance
Independent variables
maximal independent set
self‐stabilization
Stabilization
Topology
title A self‐stabilizing distributed algorithm for the 1‐MIS problem under the distance‐3 model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self%E2%80%90stabilizing%20distributed%20algorithm%20for%20the%201%E2%80%90MIS%20problem%20under%20the%20distance%E2%80%903%20model&rft.jtitle=Concurrency%20and%20computation&rft.au=Kakugawa,%20Hirotsugu&rft.date=2024-11-30&rft.volume=36&rft.issue=26&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.8281&rft_dat=%3Cproquest_cross%3E3119907967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119907967&rft_id=info:pmid/&rfr_iscdi=true