RETRACTED ARTICLE: Machine learning and IoTs for forecasting prediction of smart road traffic flow

This paper proposes to predict traffic accidents based on IoTs and deep learning to address the current problem of inaccurate traffic accident prediction. Since traditional traffic accident prediction often applies classical prediction algorithms to a small portion of data, the obtained models can o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2023, Vol.27 (1), p.323-335
Hauptverfasser: Chuanxia, Sun, Han, Zhang, Peixuan, Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 1
container_start_page 323
container_title Soft computing (Berlin, Germany)
container_volume 27
creator Chuanxia, Sun
Han, Zhang
Peixuan, Yin
description This paper proposes to predict traffic accidents based on IoTs and deep learning to address the current problem of inaccurate traffic accident prediction. Since traditional traffic accident prediction often applies classical prediction algorithms to a small portion of data, the obtained models can only predict a small range of traffic accidents. Most accident prediction models are limited by the lack of data features, do not consider the problems of practical application scenarios, and do not incorporate regional heterogeneity, so the prediction accuracy of accident prediction models is poor. This paper analyzes and summarizes the relationship between traffic accidents and influencing factors from five aspects, such as people, vehicles, roads and environment, and proves the influence of regional heterogeneity on accidents, which paves the way for traffic accident prediction. The data and heterogeneous spatial data are preprocessed and feature selected, respectively. Logistic regression and random forest algorithm are used to train the corresponding prediction models. The results show that the prediction model combined with regional heterogeneity has better comprehensive performance than the original data.
doi_str_mv 10.1007/s00500-022-07618-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119856041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119856041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1153-d09d0fbe62b7ef8addb1373c638c3de1c6f5182080584861a68002dfebdc6c413</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Sy2U1Sb2VdtVARynoO2XzULXVTky3iv3fbFbx5GGZg3nc-HoSuKdxSAHGXAAoAAllGQHAqCTtBE5ozRkQuZqfHOiOC5-wcXaS0AcioKNgENauqXs3LunrA81W9KJfVPX7R5r3tHN46Hbu2W2PdWbwIdcI-xEM4o1N_aOyis63p29Dh4HH60LHHMWiL-6i9bw322_B1ic683iZ39Zun6O2xqstnsnx9WpTzJTGUFoxYmFnwjeNZI5yX2tqGMsEMZ9Iw66jhvqAyAwmFzCWnmsvhC-tdYw03OWVTdDPO3cXwuXepV5uwj92wUjFKZ7LgcFRlo8rEkFJ0Xu1iOxz-rSioA0s1slQDS3VkqdhgYqMpDeJu7eLf6H9cP_u4dWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119856041</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Machine learning and IoTs for forecasting prediction of smart road traffic flow</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Chuanxia, Sun ; Han, Zhang ; Peixuan, Yin</creator><creatorcontrib>Chuanxia, Sun ; Han, Zhang ; Peixuan, Yin</creatorcontrib><description>This paper proposes to predict traffic accidents based on IoTs and deep learning to address the current problem of inaccurate traffic accident prediction. Since traditional traffic accident prediction often applies classical prediction algorithms to a small portion of data, the obtained models can only predict a small range of traffic accidents. Most accident prediction models are limited by the lack of data features, do not consider the problems of practical application scenarios, and do not incorporate regional heterogeneity, so the prediction accuracy of accident prediction models is poor. This paper analyzes and summarizes the relationship between traffic accidents and influencing factors from five aspects, such as people, vehicles, roads and environment, and proves the influence of regional heterogeneity on accidents, which paves the way for traffic accident prediction. The data and heterogeneous spatial data are preprocessed and feature selected, respectively. Logistic regression and random forest algorithm are used to train the corresponding prediction models. The results show that the prediction model combined with regional heterogeneity has better comprehensive performance than the original data.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-022-07618-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Application of Soft Computing ; Artificial Intelligence ; Computational Intelligence ; Control ; Deep learning ; Engineering ; Genetic algorithms ; Heterogeneity ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Neural networks ; Prediction models ; Regression models ; Robotics ; Smart roads ; Spatial data ; Telematics ; Traffic accidents ; Traffic accidents &amp; safety ; Traffic flow</subject><ispartof>Soft computing (Berlin, Germany), 2023, Vol.27 (1), p.323-335</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1153-d09d0fbe62b7ef8addb1373c638c3de1c6f5182080584861a68002dfebdc6c413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-022-07618-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3119856041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Chuanxia, Sun</creatorcontrib><creatorcontrib>Han, Zhang</creatorcontrib><creatorcontrib>Peixuan, Yin</creatorcontrib><title>RETRACTED ARTICLE: Machine learning and IoTs for forecasting prediction of smart road traffic flow</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>This paper proposes to predict traffic accidents based on IoTs and deep learning to address the current problem of inaccurate traffic accident prediction. Since traditional traffic accident prediction often applies classical prediction algorithms to a small portion of data, the obtained models can only predict a small range of traffic accidents. Most accident prediction models are limited by the lack of data features, do not consider the problems of practical application scenarios, and do not incorporate regional heterogeneity, so the prediction accuracy of accident prediction models is poor. This paper analyzes and summarizes the relationship between traffic accidents and influencing factors from five aspects, such as people, vehicles, roads and environment, and proves the influence of regional heterogeneity on accidents, which paves the way for traffic accident prediction. The data and heterogeneous spatial data are preprocessed and feature selected, respectively. Logistic regression and random forest algorithm are used to train the corresponding prediction models. The results show that the prediction model combined with regional heterogeneity has better comprehensive performance than the original data.</description><subject>Algorithms</subject><subject>Application of Soft Computing</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Heterogeneity</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Robotics</subject><subject>Smart roads</subject><subject>Spatial data</subject><subject>Telematics</subject><subject>Traffic accidents</subject><subject>Traffic accidents &amp; safety</subject><subject>Traffic flow</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Sy2U1Sb2VdtVARynoO2XzULXVTky3iv3fbFbx5GGZg3nc-HoSuKdxSAHGXAAoAAllGQHAqCTtBE5ozRkQuZqfHOiOC5-wcXaS0AcioKNgENauqXs3LunrA81W9KJfVPX7R5r3tHN46Hbu2W2PdWbwIdcI-xEM4o1N_aOyis63p29Dh4HH60LHHMWiL-6i9bw322_B1ic683iZ39Zun6O2xqstnsnx9WpTzJTGUFoxYmFnwjeNZI5yX2tqGMsEMZ9Iw66jhvqAyAwmFzCWnmsvhC-tdYw03OWVTdDPO3cXwuXepV5uwj92wUjFKZ7LgcFRlo8rEkFJ0Xu1iOxz-rSioA0s1slQDS3VkqdhgYqMpDeJu7eLf6H9cP_u4dWo</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Chuanxia, Sun</creator><creator>Han, Zhang</creator><creator>Peixuan, Yin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2023</creationdate><title>RETRACTED ARTICLE: Machine learning and IoTs for forecasting prediction of smart road traffic flow</title><author>Chuanxia, Sun ; Han, Zhang ; Peixuan, Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1153-d09d0fbe62b7ef8addb1373c638c3de1c6f5182080584861a68002dfebdc6c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Application of Soft Computing</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Heterogeneity</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Robotics</topic><topic>Smart roads</topic><topic>Spatial data</topic><topic>Telematics</topic><topic>Traffic accidents</topic><topic>Traffic accidents &amp; safety</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuanxia, Sun</creatorcontrib><creatorcontrib>Han, Zhang</creatorcontrib><creatorcontrib>Peixuan, Yin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuanxia, Sun</au><au>Han, Zhang</au><au>Peixuan, Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Machine learning and IoTs for forecasting prediction of smart road traffic flow</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2023</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>323</spage><epage>335</epage><pages>323-335</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>This paper proposes to predict traffic accidents based on IoTs and deep learning to address the current problem of inaccurate traffic accident prediction. Since traditional traffic accident prediction often applies classical prediction algorithms to a small portion of data, the obtained models can only predict a small range of traffic accidents. Most accident prediction models are limited by the lack of data features, do not consider the problems of practical application scenarios, and do not incorporate regional heterogeneity, so the prediction accuracy of accident prediction models is poor. This paper analyzes and summarizes the relationship between traffic accidents and influencing factors from five aspects, such as people, vehicles, roads and environment, and proves the influence of regional heterogeneity on accidents, which paves the way for traffic accident prediction. The data and heterogeneous spatial data are preprocessed and feature selected, respectively. Logistic regression and random forest algorithm are used to train the corresponding prediction models. The results show that the prediction model combined with regional heterogeneity has better comprehensive performance than the original data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-022-07618-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2023, Vol.27 (1), p.323-335
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_3119856041
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Application of Soft Computing
Artificial Intelligence
Computational Intelligence
Control
Deep learning
Engineering
Genetic algorithms
Heterogeneity
Machine learning
Mathematical Logic and Foundations
Mechatronics
Neural networks
Prediction models
Regression models
Robotics
Smart roads
Spatial data
Telematics
Traffic accidents
Traffic accidents & safety
Traffic flow
title RETRACTED ARTICLE: Machine learning and IoTs for forecasting prediction of smart road traffic flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Machine%20learning%20and%20IoTs%20for%20forecasting%20prediction%20of%20smart%20road%20traffic%20flow&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Chuanxia,%20Sun&rft.date=2023&rft.volume=27&rft.issue=1&rft.spage=323&rft.epage=335&rft.pages=323-335&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-022-07618-3&rft_dat=%3Cproquest_cross%3E3119856041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119856041&rft_id=info:pmid/&rfr_iscdi=true