Uncovering the Hidden Patterns of the COVID-19 Global Pandemic: An in-Depth Data Analytics Approach

COVID-19 is a highly infectious respiratory illness caused by the novel coronavirus. It was first identified in Wuhan, China in December 2019 and has since spread globally, infecting and killing a vast number of people, leading to a worldwide pandemic. The pandemic has left the world in disarray. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2024-10, Vol.5 (8), p.981, Article 981
Hauptverfasser: Sarobin, M. Vergin Raja, Rathore, Jinen, Mishra, Rajat, Moolya, Vinay Vittal, Seth, Yash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 981
container_title SN computer science
container_volume 5
creator Sarobin, M. Vergin Raja
Rathore, Jinen
Mishra, Rajat
Moolya, Vinay Vittal
Seth, Yash
description COVID-19 is a highly infectious respiratory illness caused by the novel coronavirus. It was first identified in Wuhan, China in December 2019 and has since spread globally, infecting and killing a vast number of people, leading to a worldwide pandemic. The pandemic has left the world in disarray. We wished to apply data analytics and regression models to understand and study the data – OwiD (Our World in Data) real time covid dataset - to analyse and draw trends and factors that led to the widespread of the virus. Doing so, allows us to identify key factors and trends that played a vital role in the rapid spread of the virus. We can thus determine the underlying hidden patterns of key factors. This will help provide a better understanding and determine the potential reasons COVID-19 took the world by storm with its fast-paced spread.
doi_str_mv 10.1007/s42979-024-03317-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119849212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119849212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c115y-a8bfb8efeb057c8cd3daa30ba61c6621e255d46af6dba090ce6e1656332786fb3</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEtPYH-AUiXPASdq05TZtsE2aNA6Ma5SmLuvUtSXpkPrv161IcOJky37v2foIuefwyAGiJx-IJEoYiICBlDxi3RUZCaU4ixOIrv_0t2Ti_R4ARAhBoMIRsdvK1t_oiuqTtjukyyLLsKJvpm3RVZ7W-WU823ys5owndFHWqSn7fZXhobDPdFrRomJzbNodnZvW9ANTdm1hPZ02jauN3d2Rm9yUHic_dUy2ry_vsyVbbxar2XTNLOdhx0yc5mmMOaYQRja2mcyMkZAaxa1SgqMIwyxQJldZaiABiwq5CpWUIopVnsoxeRhy-7NfR_St3tdH17_jteQ8iYNEcNGrxKCyrvbeYa4bVxyM6zQHfeapB56656kvPHXXm-Rg8s0ZFbrf6H9cJ6zkd90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119849212</pqid></control><display><type>article</type><title>Uncovering the Hidden Patterns of the COVID-19 Global Pandemic: An in-Depth Data Analytics Approach</title><source>SpringerNature Journals</source><creator>Sarobin, M. Vergin Raja ; Rathore, Jinen ; Mishra, Rajat ; Moolya, Vinay Vittal ; Seth, Yash</creator><creatorcontrib>Sarobin, M. Vergin Raja ; Rathore, Jinen ; Mishra, Rajat ; Moolya, Vinay Vittal ; Seth, Yash</creatorcontrib><description>COVID-19 is a highly infectious respiratory illness caused by the novel coronavirus. It was first identified in Wuhan, China in December 2019 and has since spread globally, infecting and killing a vast number of people, leading to a worldwide pandemic. The pandemic has left the world in disarray. We wished to apply data analytics and regression models to understand and study the data – OwiD (Our World in Data) real time covid dataset - to analyse and draw trends and factors that led to the widespread of the virus. Doing so, allows us to identify key factors and trends that played a vital role in the rapid spread of the virus. We can thus determine the underlying hidden patterns of key factors. This will help provide a better understanding and determine the potential reasons COVID-19 took the world by storm with its fast-paced spread.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-024-03317-y</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Coronaviruses ; Data analysis ; Data Structures and Information Theory ; Epidemics ; Immunization ; Information Systems and Communication Service ; Original Research ; Pandemics ; Pattern Recognition and Graphics ; Regression models ; Software Engineering/Programming and Operating Systems ; Trends ; Viral diseases ; Vision</subject><ispartof>SN computer science, 2024-10, Vol.5 (8), p.981, Article 981</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c115y-a8bfb8efeb057c8cd3daa30ba61c6621e255d46af6dba090ce6e1656332786fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-024-03317-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42979-024-03317-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Sarobin, M. Vergin Raja</creatorcontrib><creatorcontrib>Rathore, Jinen</creatorcontrib><creatorcontrib>Mishra, Rajat</creatorcontrib><creatorcontrib>Moolya, Vinay Vittal</creatorcontrib><creatorcontrib>Seth, Yash</creatorcontrib><title>Uncovering the Hidden Patterns of the COVID-19 Global Pandemic: An in-Depth Data Analytics Approach</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>COVID-19 is a highly infectious respiratory illness caused by the novel coronavirus. It was first identified in Wuhan, China in December 2019 and has since spread globally, infecting and killing a vast number of people, leading to a worldwide pandemic. The pandemic has left the world in disarray. We wished to apply data analytics and regression models to understand and study the data – OwiD (Our World in Data) real time covid dataset - to analyse and draw trends and factors that led to the widespread of the virus. Doing so, allows us to identify key factors and trends that played a vital role in the rapid spread of the virus. We can thus determine the underlying hidden patterns of key factors. This will help provide a better understanding and determine the potential reasons COVID-19 took the world by storm with its fast-paced spread.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Coronaviruses</subject><subject>Data analysis</subject><subject>Data Structures and Information Theory</subject><subject>Epidemics</subject><subject>Immunization</subject><subject>Information Systems and Communication Service</subject><subject>Original Research</subject><subject>Pandemics</subject><subject>Pattern Recognition and Graphics</subject><subject>Regression models</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Trends</subject><subject>Viral diseases</subject><subject>Vision</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwzAMhSMEEtPYH-AUiXPASdq05TZtsE2aNA6Ma5SmLuvUtSXpkPrv161IcOJky37v2foIuefwyAGiJx-IJEoYiICBlDxi3RUZCaU4ixOIrv_0t2Ti_R4ARAhBoMIRsdvK1t_oiuqTtjukyyLLsKJvpm3RVZ7W-WU823ys5owndFHWqSn7fZXhobDPdFrRomJzbNodnZvW9ANTdm1hPZ02jauN3d2Rm9yUHic_dUy2ry_vsyVbbxar2XTNLOdhx0yc5mmMOaYQRja2mcyMkZAaxa1SgqMIwyxQJldZaiABiwq5CpWUIopVnsoxeRhy-7NfR_St3tdH17_jteQ8iYNEcNGrxKCyrvbeYa4bVxyM6zQHfeapB56656kvPHXXm-Rg8s0ZFbrf6H9cJ6zkd90</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Sarobin, M. Vergin Raja</creator><creator>Rathore, Jinen</creator><creator>Mishra, Rajat</creator><creator>Moolya, Vinay Vittal</creator><creator>Seth, Yash</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241023</creationdate><title>Uncovering the Hidden Patterns of the COVID-19 Global Pandemic: An in-Depth Data Analytics Approach</title><author>Sarobin, M. Vergin Raja ; Rathore, Jinen ; Mishra, Rajat ; Moolya, Vinay Vittal ; Seth, Yash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c115y-a8bfb8efeb057c8cd3daa30ba61c6621e255d46af6dba090ce6e1656332786fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Coronaviruses</topic><topic>Data analysis</topic><topic>Data Structures and Information Theory</topic><topic>Epidemics</topic><topic>Immunization</topic><topic>Information Systems and Communication Service</topic><topic>Original Research</topic><topic>Pandemics</topic><topic>Pattern Recognition and Graphics</topic><topic>Regression models</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Trends</topic><topic>Viral diseases</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarobin, M. Vergin Raja</creatorcontrib><creatorcontrib>Rathore, Jinen</creatorcontrib><creatorcontrib>Mishra, Rajat</creatorcontrib><creatorcontrib>Moolya, Vinay Vittal</creatorcontrib><creatorcontrib>Seth, Yash</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarobin, M. Vergin Raja</au><au>Rathore, Jinen</au><au>Mishra, Rajat</au><au>Moolya, Vinay Vittal</au><au>Seth, Yash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering the Hidden Patterns of the COVID-19 Global Pandemic: An in-Depth Data Analytics Approach</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2024-10-23</date><risdate>2024</risdate><volume>5</volume><issue>8</issue><spage>981</spage><pages>981-</pages><artnum>981</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>COVID-19 is a highly infectious respiratory illness caused by the novel coronavirus. It was first identified in Wuhan, China in December 2019 and has since spread globally, infecting and killing a vast number of people, leading to a worldwide pandemic. The pandemic has left the world in disarray. We wished to apply data analytics and regression models to understand and study the data – OwiD (Our World in Data) real time covid dataset - to analyse and draw trends and factors that led to the widespread of the virus. Doing so, allows us to identify key factors and trends that played a vital role in the rapid spread of the virus. We can thus determine the underlying hidden patterns of key factors. This will help provide a better understanding and determine the potential reasons COVID-19 took the world by storm with its fast-paced spread.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-024-03317-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2661-8907
ispartof SN computer science, 2024-10, Vol.5 (8), p.981, Article 981
issn 2661-8907
2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_3119849212
source SpringerNature Journals
subjects Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Coronaviruses
Data analysis
Data Structures and Information Theory
Epidemics
Immunization
Information Systems and Communication Service
Original Research
Pandemics
Pattern Recognition and Graphics
Regression models
Software Engineering/Programming and Operating Systems
Trends
Viral diseases
Vision
title Uncovering the Hidden Patterns of the COVID-19 Global Pandemic: An in-Depth Data Analytics Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20the%20Hidden%20Patterns%20of%20the%20COVID-19%20Global%20Pandemic:%20An%20in-Depth%20Data%20Analytics%20Approach&rft.jtitle=SN%20computer%20science&rft.au=Sarobin,%20M.%20Vergin%20Raja&rft.date=2024-10-23&rft.volume=5&rft.issue=8&rft.spage=981&rft.pages=981-&rft.artnum=981&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-024-03317-y&rft_dat=%3Cproquest_cross%3E3119849212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119849212&rft_id=info:pmid/&rfr_iscdi=true