Deep-Sea A+: An Advanced Path Planning Method Integrating Enhanced A and Dynamic Window Approach for Autonomous Underwater Vehicles

As terrestrial resources become increasingly depleted, the demand for deep-sea resource exploration has intensified. However, the extreme conditions in the deep-sea environment pose significant challenges for underwater operations, necessitating the development of robust detection robots. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Lai, Yinyi, Shang, Jiaqi, Liu, Zenghui, Jiang, Zheyu, Li, Yuyang, Chen, Longchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lai, Yinyi
Shang, Jiaqi
Liu, Zenghui
Jiang, Zheyu
Li, Yuyang
Chen, Longchao
description As terrestrial resources become increasingly depleted, the demand for deep-sea resource exploration has intensified. However, the extreme conditions in the deep-sea environment pose significant challenges for underwater operations, necessitating the development of robust detection robots. In this paper, we propose an advanced path planning methodology that integrates an improved A* algorithm with the Dynamic Window Approach (DWA). By optimizing the search direction of the traditional A* algorithm and introducing an enhanced evaluation function, our improved A* algorithm accelerates path searching and reduces computational load. Additionally, the path-smoothing process has been refined to improve continuity and smoothness, minimizing sharp turns. This method also integrates global path planning with local dynamic obstacle avoidance via DWA, improving the real-time response of underwater robots in dynamic environments. Simulation results demonstrate that our proposed method surpasses the traditional A* algorithm in terms of path smoothness, obstacle avoidance, and real-time performance. The robustness of this approach in complex environments with both static and dynamic obstacles highlights its potential in autonomous underwater vehicle (AUV) navigation and obstacle avoidance.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119818909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119818909</sourcerecordid><originalsourceid>FETCH-proquest_journals_31198189093</originalsourceid><addsrcrecordid>eNqNjM1qwkAURgdBqFTf4UKXEkhmtE3cDWqpi4Lg31IumasTiXfSmUml6764FvsArj445_B1RE8qlSX5SMonMQjhlKapfH2T47Hqid8ZUZOsCEEPJ6AZtPlGLsnAEqOFZY3MFR_hk6J1BhYc6egx_qE523upAdnA7IfxXJWwq9i4C-im8Q5LCwfnQbfRsTu7NsCGDfkLRvKwJVuVNYW-6B6wDjT432fx8j5fTz-S28NXSyHuT671fFN7lWVFnuVFWqjHqiumLlAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119818909</pqid></control><display><type>article</type><title>Deep-Sea A+: An Advanced Path Planning Method Integrating Enhanced A and Dynamic Window Approach for Autonomous Underwater Vehicles</title><source>Free E- Journals</source><creator>Lai, Yinyi ; Shang, Jiaqi ; Liu, Zenghui ; Jiang, Zheyu ; Li, Yuyang ; Chen, Longchao</creator><creatorcontrib>Lai, Yinyi ; Shang, Jiaqi ; Liu, Zenghui ; Jiang, Zheyu ; Li, Yuyang ; Chen, Longchao</creatorcontrib><description>As terrestrial resources become increasingly depleted, the demand for deep-sea resource exploration has intensified. However, the extreme conditions in the deep-sea environment pose significant challenges for underwater operations, necessitating the development of robust detection robots. In this paper, we propose an advanced path planning methodology that integrates an improved A* algorithm with the Dynamic Window Approach (DWA). By optimizing the search direction of the traditional A* algorithm and introducing an enhanced evaluation function, our improved A* algorithm accelerates path searching and reduces computational load. Additionally, the path-smoothing process has been refined to improve continuity and smoothness, minimizing sharp turns. This method also integrates global path planning with local dynamic obstacle avoidance via DWA, improving the real-time response of underwater robots in dynamic environments. Simulation results demonstrate that our proposed method surpasses the traditional A* algorithm in terms of path smoothness, obstacle avoidance, and real-time performance. The robustness of this approach in complex environments with both static and dynamic obstacles highlights its potential in autonomous underwater vehicle (AUV) navigation and obstacle avoidance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Autonomous navigation ; Autonomous underwater vehicles ; Deep sea environments ; Marine resources ; Obstacle avoidance ; Path planning ; Real time ; Robot dynamics ; Search algorithms ; Smoothness ; Time response ; Underwater robots</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lai, Yinyi</creatorcontrib><creatorcontrib>Shang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Zenghui</creatorcontrib><creatorcontrib>Jiang, Zheyu</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Chen, Longchao</creatorcontrib><title>Deep-Sea A+: An Advanced Path Planning Method Integrating Enhanced A and Dynamic Window Approach for Autonomous Underwater Vehicles</title><title>arXiv.org</title><description>As terrestrial resources become increasingly depleted, the demand for deep-sea resource exploration has intensified. However, the extreme conditions in the deep-sea environment pose significant challenges for underwater operations, necessitating the development of robust detection robots. In this paper, we propose an advanced path planning methodology that integrates an improved A* algorithm with the Dynamic Window Approach (DWA). By optimizing the search direction of the traditional A* algorithm and introducing an enhanced evaluation function, our improved A* algorithm accelerates path searching and reduces computational load. Additionally, the path-smoothing process has been refined to improve continuity and smoothness, minimizing sharp turns. This method also integrates global path planning with local dynamic obstacle avoidance via DWA, improving the real-time response of underwater robots in dynamic environments. Simulation results demonstrate that our proposed method surpasses the traditional A* algorithm in terms of path smoothness, obstacle avoidance, and real-time performance. The robustness of this approach in complex environments with both static and dynamic obstacles highlights its potential in autonomous underwater vehicle (AUV) navigation and obstacle avoidance.</description><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Autonomous underwater vehicles</subject><subject>Deep sea environments</subject><subject>Marine resources</subject><subject>Obstacle avoidance</subject><subject>Path planning</subject><subject>Real time</subject><subject>Robot dynamics</subject><subject>Search algorithms</subject><subject>Smoothness</subject><subject>Time response</subject><subject>Underwater robots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjM1qwkAURgdBqFTf4UKXEkhmtE3cDWqpi4Lg31IumasTiXfSmUml6764FvsArj445_B1RE8qlSX5SMonMQjhlKapfH2T47Hqid8ZUZOsCEEPJ6AZtPlGLsnAEqOFZY3MFR_hk6J1BhYc6egx_qE523upAdnA7IfxXJWwq9i4C-im8Q5LCwfnQbfRsTu7NsCGDfkLRvKwJVuVNYW-6B6wDjT432fx8j5fTz-S28NXSyHuT671fFN7lWVFnuVFWqjHqiumLlAk</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Lai, Yinyi</creator><creator>Shang, Jiaqi</creator><creator>Liu, Zenghui</creator><creator>Jiang, Zheyu</creator><creator>Li, Yuyang</creator><creator>Chen, Longchao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241022</creationdate><title>Deep-Sea A+: An Advanced Path Planning Method Integrating Enhanced A and Dynamic Window Approach for Autonomous Underwater Vehicles</title><author>Lai, Yinyi ; Shang, Jiaqi ; Liu, Zenghui ; Jiang, Zheyu ; Li, Yuyang ; Chen, Longchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31198189093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Autonomous underwater vehicles</topic><topic>Deep sea environments</topic><topic>Marine resources</topic><topic>Obstacle avoidance</topic><topic>Path planning</topic><topic>Real time</topic><topic>Robot dynamics</topic><topic>Search algorithms</topic><topic>Smoothness</topic><topic>Time response</topic><topic>Underwater robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Lai, Yinyi</creatorcontrib><creatorcontrib>Shang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Zenghui</creatorcontrib><creatorcontrib>Jiang, Zheyu</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Chen, Longchao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Yinyi</au><au>Shang, Jiaqi</au><au>Liu, Zenghui</au><au>Jiang, Zheyu</au><au>Li, Yuyang</au><au>Chen, Longchao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep-Sea A+: An Advanced Path Planning Method Integrating Enhanced A and Dynamic Window Approach for Autonomous Underwater Vehicles</atitle><jtitle>arXiv.org</jtitle><date>2024-10-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>As terrestrial resources become increasingly depleted, the demand for deep-sea resource exploration has intensified. However, the extreme conditions in the deep-sea environment pose significant challenges for underwater operations, necessitating the development of robust detection robots. In this paper, we propose an advanced path planning methodology that integrates an improved A* algorithm with the Dynamic Window Approach (DWA). By optimizing the search direction of the traditional A* algorithm and introducing an enhanced evaluation function, our improved A* algorithm accelerates path searching and reduces computational load. Additionally, the path-smoothing process has been refined to improve continuity and smoothness, minimizing sharp turns. This method also integrates global path planning with local dynamic obstacle avoidance via DWA, improving the real-time response of underwater robots in dynamic environments. Simulation results demonstrate that our proposed method surpasses the traditional A* algorithm in terms of path smoothness, obstacle avoidance, and real-time performance. The robustness of this approach in complex environments with both static and dynamic obstacles highlights its potential in autonomous underwater vehicle (AUV) navigation and obstacle avoidance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3119818909
source Free E- Journals
subjects Algorithms
Autonomous navigation
Autonomous underwater vehicles
Deep sea environments
Marine resources
Obstacle avoidance
Path planning
Real time
Robot dynamics
Search algorithms
Smoothness
Time response
Underwater robots
title Deep-Sea A+: An Advanced Path Planning Method Integrating Enhanced A and Dynamic Window Approach for Autonomous Underwater Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep-Sea%20A+:%20An%20Advanced%20Path%20Planning%20Method%20Integrating%20Enhanced%20A%20and%20Dynamic%20Window%20Approach%20for%20Autonomous%20Underwater%20Vehicles&rft.jtitle=arXiv.org&rft.au=Lai,%20Yinyi&rft.date=2024-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119818909%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119818909&rft_id=info:pmid/&rfr_iscdi=true