Comparative Study of Multilingual Idioms and Similes in Large Language Models

This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of vario...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Paria Khoshtab, Namazifard, Danial, Masoudi, Mostafa, Akhgary, Ali, Samin Mahdizadeh Sani, Yaghoobzadeh, Yadollah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Paria Khoshtab
Namazifard, Danial
Masoudi, Mostafa
Akhgary, Ali
Samin Mahdizadeh Sani
Yaghoobzadeh, Yadollah
description This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119818391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119818391</sourcerecordid><originalsourceid>FETCH-proquest_journals_31198183913</originalsourceid><addsrcrecordid>eNqNitEKgjAYRkcQJOU7_NC14LYsvZaiIK_sXgabMpmb7d-C3j6DHqCb8x34zookjHOalQfGNiRFHPM8Z8cTKwqekKZ20yy8CPqloA1RvsH10EQTtNF2iMLATWo3IQgrodWTNgpBW7gLP6iF32aRxkllcEfWvTCo0t9uyf5yftTXbPbuGRWGbnTR2-XqOKVVSUteUf5f9QFy9T2C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119818391</pqid></control><display><type>article</type><title>Comparative Study of Multilingual Idioms and Similes in Large Language Models</title><source>Free E- Journals</source><creator>Paria Khoshtab ; Namazifard, Danial ; Masoudi, Mostafa ; Akhgary, Ali ; Samin Mahdizadeh Sani ; Yaghoobzadeh, Yadollah</creator><creatorcontrib>Paria Khoshtab ; Namazifard, Danial ; Masoudi, Mostafa ; Akhgary, Ali ; Samin Mahdizadeh Sani ; Yaghoobzadeh, Yadollah</creatorcontrib><description>This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Comparative studies ; Datasets ; Effectiveness ; Large language models ; Performance evaluation ; Prompt engineering</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Paria Khoshtab</creatorcontrib><creatorcontrib>Namazifard, Danial</creatorcontrib><creatorcontrib>Masoudi, Mostafa</creatorcontrib><creatorcontrib>Akhgary, Ali</creatorcontrib><creatorcontrib>Samin Mahdizadeh Sani</creatorcontrib><creatorcontrib>Yaghoobzadeh, Yadollah</creatorcontrib><title>Comparative Study of Multilingual Idioms and Similes in Large Language Models</title><title>arXiv.org</title><description>This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations.</description><subject>Comparative studies</subject><subject>Datasets</subject><subject>Effectiveness</subject><subject>Large language models</subject><subject>Performance evaluation</subject><subject>Prompt engineering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAYRkcQJOU7_NC14LYsvZaiIK_sXgabMpmb7d-C3j6DHqCb8x34zookjHOalQfGNiRFHPM8Z8cTKwqekKZ20yy8CPqloA1RvsH10EQTtNF2iMLATWo3IQgrodWTNgpBW7gLP6iF32aRxkllcEfWvTCo0t9uyf5yftTXbPbuGRWGbnTR2-XqOKVVSUteUf5f9QFy9T2C</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Paria Khoshtab</creator><creator>Namazifard, Danial</creator><creator>Masoudi, Mostafa</creator><creator>Akhgary, Ali</creator><creator>Samin Mahdizadeh Sani</creator><creator>Yaghoobzadeh, Yadollah</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241021</creationdate><title>Comparative Study of Multilingual Idioms and Similes in Large Language Models</title><author>Paria Khoshtab ; Namazifard, Danial ; Masoudi, Mostafa ; Akhgary, Ali ; Samin Mahdizadeh Sani ; Yaghoobzadeh, Yadollah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31198183913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Comparative studies</topic><topic>Datasets</topic><topic>Effectiveness</topic><topic>Large language models</topic><topic>Performance evaluation</topic><topic>Prompt engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Paria Khoshtab</creatorcontrib><creatorcontrib>Namazifard, Danial</creatorcontrib><creatorcontrib>Masoudi, Mostafa</creatorcontrib><creatorcontrib>Akhgary, Ali</creatorcontrib><creatorcontrib>Samin Mahdizadeh Sani</creatorcontrib><creatorcontrib>Yaghoobzadeh, Yadollah</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paria Khoshtab</au><au>Namazifard, Danial</au><au>Masoudi, Mostafa</au><au>Akhgary, Ali</au><au>Samin Mahdizadeh Sani</au><au>Yaghoobzadeh, Yadollah</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comparative Study of Multilingual Idioms and Similes in Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-10-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3119818391
source Free E- Journals
subjects Comparative studies
Datasets
Effectiveness
Large language models
Performance evaluation
Prompt engineering
title Comparative Study of Multilingual Idioms and Similes in Large Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comparative%20Study%20of%20Multilingual%20Idioms%20and%20Similes%20in%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Paria%20Khoshtab&rft.date=2024-10-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119818391%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119818391&rft_id=info:pmid/&rfr_iscdi=true